5.2 RFID閱讀器協議一致性測試實例
EPC UHF Class 1 Gen 2標準RFID閱讀器協議一致性物理層測試項目如表5-3所示:
測試規(guī)范序號 |
物理層測試項目 |
測試點數 |
7 |
頻率準確度 |
50 |
12 |
數據編碼 |
2 |
14 |
射頻包絡1 |
2 |
14 |
射頻包絡2 |
2 |
21 |
上電射頻包絡1 |
1 |
22 |
上電射頻包絡2 |
1 |
24 |
下電射頻包絡1 |
1 |
25 |
下電射頻包絡2 |
1 |
32 |
前導碼 |
2 |
42 |
FHSS射頻包絡 |
1 |
46 |
FHSS信道 |
50 |
48 |
多閱讀器模式頻譜 |
1 |
51 |
密集閱讀器模式頻譜 |
1 |
358 |
單邊帶模式頻譜 |
1 |
表5-3:RFID閱讀器協議一致性物理層測試項目
物理層測試中,我們選取數據編碼,射頻包絡1和密集閱讀器模式頻譜三個測試項目的單個測試點為例。
數據編碼測試的目的是測量閱讀器信號中的PIE編碼參數,編碼參數確定了閱讀器信號數據位的標準長度,并間接確定了標簽信號的鏈接速率。閱讀器信號采用不同的脈沖長度進行數據信息的編碼,數據0應在6.25到25微秒之間,數據1與數據0的長度之比,應滿足如圖5-6所示的規(guī)定:
圖5-6:PIE編碼符號
測試過程中,RFID閱讀器協議一致性測試系統接收被測閱讀器發(fā)送的指令,并測量Query指令中數據0和數據1 的編碼參數。實測信號如圖5-7所示,三個光標之間依次為數據1和數據0,其中數據0長度,即Tari為24.8微秒,數據1長度為43.2微秒,PIEx為18.4微秒,符合協議規(guī)定。
圖5-7:PIE編碼實測信號
射頻包絡1測試的目的是測量閱讀器信號中的ASK調制參數,包括調制深度、上升沿時間、下降沿時間和脈沖寬度,調制參數必須在一定的范圍之內,標簽才能夠正確識別閱讀器的信號。閱讀器到標簽傳輸的普通ASK和PR-ASK信號的射頻包絡都有嚴格的定義,調制深度應在80%到100%之間,上升沿、下降沿時間應小于0.33數據位長度,脈沖寬度應在0.265到0.525數據位長度之間,如圖5-8所示:
圖5-8:普通ASK和PR-ASK信號的射頻包絡
測試過程中,RFID閱讀器協議一致性測試系統接收被測閱讀器發(fā)送的指令,并測量特定脈沖的調制參數。實測信號如圖5-9所示,被測閱讀器采用的是PR-ASK信號,經過脈沖成型濾波后波形變得圓滑,數據位長度為24.8微秒,調制深度為97.4%,上升沿時間為8.0微秒,下降沿時間為7.6微秒,脈沖寬度為12.6微秒,符合協議規(guī)定。
圖5-9:PR-ASK射頻包絡實測信號
密集閱讀器模式頻譜測試的目的是測量閱讀器信號的頻譜構成,在密集閱讀器模式下,應用環(huán)境中將有多個閱讀器在不同的信道上同時通訊,因此要求每個閱讀器只能占用自己的信道,發(fā)射信號在該信道以外的功率應該足夠小,否則可能干擾相鄰信道閱讀器的正常通訊。密集閱讀器模式頻譜在第1、2、3鄰道的抑制比需要分別達到-30、-60、-65dBch,如圖5-10所示:
圖5-10:密集閱讀器模式頻譜模板
測試過程中,RFID閱讀器協議一致性測試系統接收被測閱讀器發(fā)送的指令,并計算一段Select指令的信號頻譜,與標準的頻譜模板進行比較。實測信號如圖5-11所示,被測閱讀器采用數據位長度25微秒的信號,相應信道寬度為100kHz,頻譜未超出模板的限制,符合協議規(guī)定。
圖5-11:密集閱讀器模式頻譜實測信號
EPC UHF Class 1 Gen 2標準RFID閱讀器協議一致性協議層測試項目如表5-4所示,主要為各個鏈接時間的測量。測試過程中,RFID閱讀器協議一致性測試系統接收被測閱讀器發(fā)送的指令,并根據測試需求返回相應的應答信號,類似于標簽測試中的鏈接時間測試,故不再單獨舉例:
測試規(guī)范序號 協議層測試項目 測試點數
70 鏈接時間T2 2
70 鏈接時間T3 2
70 鏈接時間T4 2
表5-4:RFID閱讀器協議一致性協議層測試項目
參考文獻
[01] EPC. Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz – 960 MHz Version 1.1.0 [S]. December 2005.
[02] EPC. Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Conformance Requirements Version 1.0.4 [S]. July 2006.
[03] ISO/IEC. TR 18047-6 Test Methods for Air Interface Communications at 860 MHz to 960 MHz [S]. June 2006.
[04] 陳柯, 邵暉. 采用NI模塊化儀器構建業(yè)界領先的RFID測試系統 [C]. 美國國家儀器虛擬儀器技術論文集, 2006.
[05] 陳柯, 何婷婷. 基于軟件無線電技術實現RFID全程測試 [J]. 卡技術與安全, 2009(05).
[06] National Instruments. Advanced RFID Measurements: Basic Theory to Protocol Conformance Test [R]. http://zone.ni.com/devzone/cda/tut/p/id/6645
[07] National Instruments. RFID Testing [R]. http://www.ni.com/automatedtest/rfid.htm
[08] Alex K. Jones, Swapna R. Dontharaju, Leonid Mats, James T. Cain, and Marlin H. Mickle. Exploring RFID Prototyping in the Virtual Laboratory [C]. IEEE MSE International Conference, 2007.
[09] Pavel V. Nikitin and K. V. S. Rao. Theory and Measurement of Backscattering from RFID Tags [J]. IEEE Antennas and Propagation Magazine, December 2006.
[10] 宋麗麗, 任治剛. 軟件無線電技術綜述 [R]. http://www.eefocus.com/article/07-02/110120202051829.html
[11] Andy Toth. 為ATE系統選擇最佳平臺――VXI、PXI或者GPIB總線 [R]. http://www.ed-china.com/ART_8800011218_400013_500015_TS_683e00af.HTM
[12] Daniel M. Dobkin. The RF in RFID: Passive UHF RFID in Practice [M]. Newnes, September 2007.