《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 嵌入式技術(shù) > 設(shè)計(jì)應(yīng)用 > 基于粒子濾波的視覺跟蹤器的設(shè)計(jì)與實(shí)現(xiàn)
基于粒子濾波的視覺跟蹤器的設(shè)計(jì)與實(shí)現(xiàn)
來源:電子技術(shù)應(yīng)用2013年第11期
楊 戈1,2, 溫詩偉1, 黃 靜1
1. 北京師范大學(xué) 珠海分校 信息技術(shù)學(xué)院, 廣東 珠海 519087; 2. 北京大學(xué) 深圳研究生院 深圳物聯(lián)網(wǎng)智能感知技術(shù)工程實(shí)驗(yàn)室,廣東 深圳518055
摘要: 在VC++6.0開發(fā)平臺(tái)上使用OpenCV函數(shù)庫中基于加權(quán)顏色直方圖的粒子濾波算法,設(shè)計(jì)了一個(gè)視覺跟蹤器,完成了對人體圖像序列中目標(biāo)的動(dòng)態(tài)跟蹤。目標(biāo)顏色模型的合理建立使得視覺跟蹤器對系統(tǒng)資源需求較少, 計(jì)算速度較快, 利于實(shí)現(xiàn)實(shí)時(shí)跟蹤。實(shí)驗(yàn)結(jié)果驗(yàn)證了該視覺跟蹤器的有效性和實(shí)時(shí)性,它能夠比較精確地實(shí)現(xiàn)基于觀測量和控制量的后驗(yàn)概率分布,可用于解決即時(shí)定位與地圖構(gòu)建(SLAM)問題。
中圖分類號(hào): TP389.1;TP183
文獻(xiàn)標(biāo)識(shí)碼: A
文章編號(hào): 0258-7998(2013)11-0142-03
Design and implementation of a visual tracker based on particle filter
Yang Ge1,2,Wen Shiwei1, Huang Jing1
1. College of Information Technology, Beijing Normal University Zhuhai Campus, Zhuhai 519087, China) 2. Engineering Lab on Intelligent Perception for Internet of Things(ELIP), Shenzhen Graduate School, Peking University, Shenzhen 518055, China
Abstract: In this paper, the VC + +6.0 development platform using OpenCV library weighted color histogram-based particle filter algorithm to achieve a visual tracking, dynamic tracking of targets in the human image sequences. Reasonable establishment of the target color model makes less demand on system resources, fast calculation, visual tracking conducive to the realization of real-time tracking. The experimental results verify the effectiveness and real-time of the visual tracking and it is able to more accurately express the posterior probability distribution based on the concept of measurement and control. It can be used to solve the SLAM problem.
Key words : visual tracking; color histogram; feature tracking; particle filtering; OpenCV

   視覺跟蹤是通過對圖像序列中的運(yùn)動(dòng)目標(biāo)進(jìn)行檢測、識(shí)別、跟蹤,獲得運(yùn)動(dòng)目標(biāo)的運(yùn)動(dòng)參數(shù),通過進(jìn)一步處理與分析,實(shí)現(xiàn)對運(yùn)動(dòng)目標(biāo)的行為認(rèn)識(shí),以完成對運(yùn)動(dòng)目標(biāo)的跟蹤[1-2]等更高級(jí)的任務(wù)。處理理背景復(fù)雜多變的目標(biāo)運(yùn)動(dòng)的跟蹤問題,要運(yùn)用到現(xiàn)階段各相關(guān)領(lǐng)域相結(jié)合的識(shí)別跟蹤算法,如均值漂移算法(Mean Shift)[3],卡爾曼濾波算法(Kalman)、粒子群跟蹤算法(Pso)[4],以及粒子濾波跟蹤算法PF(Particle Filter)[5]。粒子濾波算法適合處理非線性系統(tǒng)的目標(biāo)跟蹤問題,它擺脫了解決非線性濾波問題時(shí),隨機(jī)量必須滿足高斯分布的制約[6]。因此,粒子濾波能夠比較精確地表達(dá)基于觀測量和控制量的后驗(yàn)概率分布,可用于解決即時(shí)定位與地圖構(gòu)建SLAM(Simultaneous Localization and Mapping)問題。




4 實(shí)驗(yàn)與結(jié)果分析
4.1實(shí)驗(yàn)環(huán)境

    實(shí)驗(yàn)的硬件環(huán)境:CPU型號(hào):Intel 酷睿i5 3210 M,CPU主頻為2.5 GHz,內(nèi)存為4 GB,顯存為2 GB。
    實(shí)驗(yàn)的軟件環(huán)境:操作系統(tǒng)為Windows 7,編程環(huán)境為Microsoft Visual C++ 6.0,所用函數(shù)庫為OpenCV,MFC。
4.2 實(shí)驗(yàn)結(jié)果與分析
    采用基于加權(quán)顏色直方圖粒子濾波的視覺跟蹤器對目標(biāo)進(jìn)行跟蹤的。
    本文將基于加權(quán)顏色直方圖的粒子濾波算法用于目標(biāo)人物的實(shí)時(shí)跟蹤。實(shí)驗(yàn)是在VC++6.0和OpenCV的環(huán)境下進(jìn)行,矩形為人為設(shè)定,每幀圖像的大小為640×480像素,粒子數(shù)N=150。圖2所示為對小件物體的運(yùn)動(dòng)目標(biāo)的視覺跟蹤,并把粒子樣本顯示出來,如圖方框中的粒子,粒子分布符合高斯分布。圖3所示為對女生的運(yùn)動(dòng)目標(biāo)的視覺跟蹤,圖中矩形內(nèi)部是待跟蹤的目標(biāo)人物,矩形為人為設(shè)定,用基于加權(quán)顏色直方圖的粒子濾波方法對具有特定顏色的目標(biāo)進(jìn)行跟蹤,計(jì)算每幀圖像每個(gè)像素點(diǎn)的顏色概率分布直方圖,對每個(gè)像素進(jìn)行加權(quán)處理,只需保留樣本中權(quán)值大的粒子,拋棄權(quán)值小的粒子,這樣就大大減少了計(jì)算。實(shí)驗(yàn)結(jié)果表明,粒子濾波跟蹤算法對系統(tǒng)資源要求不高,計(jì)算時(shí)間少,一幀平均處理時(shí)間為170 ms。而在有遮擋的運(yùn)動(dòng)目標(biāo)的圖像序列當(dāng)中,每幀圖像的大小為640×480像素,粒子數(shù)N=150,對有遮擋的運(yùn)動(dòng)目標(biāo)能夠有很好的魯棒性,平均每幀跟蹤時(shí)間為350 ms。圖4所示為對男生的運(yùn)動(dòng)目標(biāo)的視覺跟蹤,對有遮擋的目標(biāo),跟蹤的準(zhǔn)確率有所下降;而有遮擋的運(yùn)動(dòng)目標(biāo)則有很好的魯棒性,平均每幀跟蹤時(shí)間為350 ms。表1為圖像序列在這兩種情況下,跟蹤算法的成功率的比較,當(dāng)跟蹤窗口沒有跟蹤目標(biāo)視為失敗。

 

 

 

    本文闡述了通過基于特征跟蹤策略,應(yīng)用OpenCV函數(shù)庫進(jìn)行對圖像序列的運(yùn)動(dòng)目標(biāo)進(jìn)行跟蹤和監(jiān)測,實(shí)現(xiàn)了基于加權(quán)顏色直方圖粒子濾波的視覺跟蹤器。通過實(shí)驗(yàn)表明,基于加權(quán)顏色直方圖的粒子濾波方法計(jì)算效率高,魯棒性好,實(shí)現(xiàn)了對彩色物體的實(shí)時(shí)跟蹤。
參考文獻(xiàn)
[1] 侯志強(qiáng),韓崇昭.視覺跟蹤技術(shù)綜述[J].自動(dòng)化學(xué)報(bào),2006,32(4):604-612.
[2] 楊戈,劉宏.視覺跟蹤算法綜述[J].智能系統(tǒng)學(xué)報(bào), 2010,5(2):96-102.
[3] 周芳芳,樊曉平,葉榛.均值漂移算法的研究與應(yīng)用[J].控制與決策, 2007(8):841-847.
[4] 竇永梅. 基于粒子群算法和卡爾曼濾波的運(yùn)動(dòng)目標(biāo)跟蹤算法[D]. 太原:太原理工大學(xué),2011.
[5] 王法勝,郭權(quán).視覺跟蹤中的粒子濾波算法研究進(jìn)展[J]. 山西大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,34(4):528-533.
[6] 胡昭華,樊鑫,梁德群,等.基于雙線非線性學(xué)習(xí)的軌跡 跟蹤和識(shí)別[J].計(jì)算機(jī)學(xué)報(bào),2007,30(8):1390-1397.
[7] 吳長江,趙不賄,鄭博,等.基于FPGA的動(dòng)態(tài)目標(biāo)跟蹤系統(tǒng)設(shè)計(jì)[J].電子技術(shù)應(yīng)用,2010,36(3):45-50.
[8] 李由,張恒,李立春.基于多測量融合的粒子濾波跟蹤算法[J].國防科技大學(xué)學(xué)報(bào),2007,29(5):27-30.
[9] 楊柳,張寶亮,趙建,等.基于改進(jìn)粒子濾波算法的人體運(yùn)動(dòng)跟蹤[J]. 電子技術(shù)應(yīng)用,2007,33(11):74-79.

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 嫩b人妻精品一区二区三区| 中文字幕日韩人妻不卡一区 | 国产亚洲综合激情校园小说 | 2022久久国产精品免费热麻豆| 国产v片成人影院在线观看| 象人族女人能吃得消吗| 真人无码作爱免费视频| 欧美成人免费全部观看在线看 | 伊人久久大香线蕉亚洲| 亚洲Av高清一区二区三区| 中文无码一区二区不卡αv | 久久国产精品久久| 一级黄色毛片免费看| 一区二区三区精品视频| 99福利视频导航| 98精品国产综合久久| 91在线老师啪国自产| 波多野结衣一区二区三区高清av | 快播电影网日韩新片| 久久久久久久性潮| 99久在线观看| 菠萝蜜视频在线观看| 欧美在线一级视频| 婷婷四房综合激情五月在线| 国产成人亚洲精品无码AV大片| 亚洲黄色在线视频| 丰满人妻一区二区三区免费视频| 一二三四视频中文字幕在线看| 美国一级毛片免费| 最近最新中文字幕| 国精品无码一区二区三区左线| 国产一区二区精品久久| 亚洲午夜久久久影院伊人| www.日本高清| 色综久久天天综合绕视看| 欧美bbbbbxxxxx| 国产馆在线观看| 人妻少妇精品久久久久久| 中国xxxxx高清免费看视频| 韩国中文电影在线看完整免费版| 欧美变态老妇重口与另类|