《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于優化BP神經網絡的水稻病害識別算法研究
基于優化BP神經網絡的水稻病害識別算法研究
2020年電子技術應用第9期
陳悅寧,郭士增,張佳巖,蒲一鳴
哈爾濱工業大學 電子與信息工程學院,黑龍江 哈爾濱150001
摘要: 結合圖像處理技術和機器學習算法,對水稻的3種最常見病害(即稻瘟病、白葉枯病和細菌性條斑病)進行識別和分類。首先,分割出水稻病害圖像中的病斑部分并建立圖像集,然后針對病理外在表現提取和優化病斑特征。接著,建立BP神經網絡模型來根據優化后的特征來識別不同種類的水稻病害。最后,利用模擬退火算法結合自適應遺傳算法,為BP算法選擇合適的初始參數,以尋求最優解,改進分類模型。結果表明,改進后的NAGSA-BP算法具有較高的水稻病害識別準確率,具有可行性,且與傳統的人工檢測方法相比更加準確和高效。
中圖分類號: TN911.73;TP183
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.190998
中文引用格式: 陳悅寧,郭士增,張佳巖,等. 基于優化BP神經網絡的水稻病害識別算法研究[J].電子技術應用,2020,46(9):85-87,93.
英文引用格式: Chen Yuening,Guo Shizeng,Zhang Jiayan,et al. Research on rice disease recognition algorithms based on optimized BP neural network[J]. Application of Electronic Technique,2020,46(9):85-87,93.
Research on rice disease recognition algorithms based on optimized BP neural network
Chen Yuening,Guo Shizeng,Zhang Jiayan,Pu Yiming
School of Electronic and Information Engineering,Harbin Institute of Technology,Harbin 150001,China
Abstract: In this study, image processing technology and machine learning algorithm are combined to identify and classify the three most common diseases of rice, namely rice blast, bacterial leaf blight and bacterial streak. Firstly, the lesion part of rice disease image is segmented and the image set of rice disease is established. Then, according to the pathological appearance of different disease spots, characteristic parameters from various aspects are extracted and optimized. Then, BP neural network is used to build the model and classify the optimized features. Finally, the BP classification model is improved by optimizing the selection process of weights and thresholds in BP algorithm with simulated annealing algorithm and adaptive genetic algorithm. The results show that the improved algorithm has high accuracy in rice disease identification and is feasible. This method is more efficient and accurate than traditional manual diagnosis method.
Key words : identification of rice disease;BP neural network;adaptive genetic algorithm;simulated annealing algorithm;image processing

0 引言

    利用計算機視覺技術結合圖像處理和機器學習的手段,可以通過植物葉片的外在特征來識別水稻等植物的不同病害,減輕人工工作量,并在保證準確率的同時提高效率。植物病害的識別算法分為病害圖像目標分割算法和病害圖像模型分類算法兩大部分。

    在植物病害圖像目標分割的研究中,張武等人[1]在2015年基于K-均值聚類算法和最大類間方差法進行小麥病害圖像分割,準確率超過95%;馬媛等人[2]在2016年利用方向梯度直方圖特征結合均值漂移算法監督葡萄生長狀態與病蟲害,該方法取得了80%以上的準確率;MAI X等人[3]在2016年針對水稻病葉的顏色、紋理等特征,將超像素算法和隨機森林分類器相結合,圈定了病斑區域。

    在植物病害圖像模型分類的研究中,2014年張善文等人[4]利用局部判別映射算法結合最近鄰分類器,將玉米病斑圖像重組為向量并進行識別,得到高于90%的準確率;陳俊伸[5]在2019年改進了深度卷積神經網絡模型進行水稻葉瘟病識別,與人工抽樣調查結果交叉驗證的Kappa系數為0.78,具有較高一致性。

    圖像處理和機器學習算法在識別作物病害方向取得了較好成效。然而受到圖像集效果和作物不同外在特征的影響,算法還有優化空間。本文對水稻的3種常見病害[6]識別進行研究,同樣將識別過程分為兩個環節:首先對圖像進行預處理,從中提取病斑特征并降維,用于后續分類;然后使用BP神經網絡算法對水稻病害進行識別,將其與自適應遺傳算法模擬退火算法結合后作為最終分類器[7]




本文詳細內容請下載:http://www.xxav2194.com/resource/share/2000002988




作者信息:

陳悅寧,郭士增,張佳巖,蒲一鳴

(哈爾濱工業大學 電子與信息工程學院,黑龍江 哈爾濱150001)

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 国产精品无码一区二区在线观一 | 久久综合久久精品| 精品1州区2区3区4区产品乱码| 国产日韩精品视频| 99久热只有精品视频免费观看17| 成年性午夜免费视频网站不卡| 国产男女爽爽爽免费视频| 久久国产高清视频| 亚洲av无码欧洲av无码网站| 精品四虎免费观看国产高清午夜 | 黑寡妇被绿巨人擦gif图| 日本成人免费在线| 亚洲第一成年免费网站| 成人在线免费看片| 国语自产少妇精品视频蜜桃| 九九热精品国产| 精品欧美一区二区3d动漫| 国产美女一级视频| 久久精品国产99久久久| 精品久久久久香蕉网| 国产另类TS人妖一区二区| 5060午夜一级一片| 波多野结衣中文字幕一区| 国产成人av一区二区三区不卡| 一级毛片私人影院| 日韩久久精品一区二区三区| 免费不卡在线观看av| 色综合天天娱乐综合网| 国产猛男猛女超爽免费视频 | a级毛片免费观看在线播放| 搞av.com| 久久国产精品一国产精品| 村上凉子丰满禁断五十路| 亚洲成aⅴ人片在线影院八| 视频在线观看一区| 在车里被撞了八次高c| 久久本网站受美利坚法律保护| 欧美成人看片一区二区三区| 人人狠狠综合久久亚洲婷婷| 精品香蕉久久久午夜福利| 国产三香港三韩国三级不卡|