《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于深度密集連接控制網絡的單幅圖像去雨
基于深度密集連接控制網絡的單幅圖像去雨
2020年電子技術應用第12期
李 蔚,安鶴男,劉 佳,涂志偉,張昌林
深圳大學 電子與信息工程學院,廣東 深圳518061
摘要: 雨線造成的圖像質量退化嚴重影響圖像有效應用及計算機視覺算法,因此圖像去雨十分必要。目前主流的深度學習去雨方法僅對單一尺寸的雨線有效,并且存在雨線去除不完全、模糊背景等問題。針對以上難點,提出了基于深度密集連接控制網絡的單幅圖像去雨算法。通過引入多尺度特征網絡加強對不同尺寸雨線的提取能力,引入注意力機制模塊提升對有雨區域的關注度,引入密集連接控制網絡以完整表示雨線特征。實驗表明,該方法在合成數據集以及真實數據集對比主流去雨方法效果均有提升。
中圖分類號: TP183
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.200400
中文引用格式: 李蔚,安鶴男,劉佳,等. 基于深度密集連接控制網絡的單幅圖像去雨[J].電子技術應用,2020,46(12):48-52.
英文引用格式: Li Wei,An Henan,Liu Jia,et al. Deep controlled dense connection network for single image deraining[J]. Applica-
tion of Electronic Technique,2020,46(12):48-52.
Deep controlled dense connection network for single image deraining
Li Wei,An Henan,Liu Jia,Tu Zhiwei,Zhang Changlin
College of Electronics and Information Engineering,Shenzhen University,Shenzhen 518061,China
Abstract: Image quality degradation caused by rain streaks seriously affects the effective application of image and computer vision algorithm, so image deraining is very necessary. At present, mainstream deraining methods based on deep learning are only effective for single size rain streaks, and there are problems such as incomplete rain streaks removal and fuzzy background. Aiming at these difficulties, a single image deraining algorithm based on deep controlled dense connection network is presented. Through the introduction of multi-scale block, the ability to extract rain streaks of different sizes was enhanced. And attention mechanism module was injected to pay more attention to raining areas. What is more, controlled dense connection block was also introduced to fully represent the rain streaks characteristics. Experiments show that the proposed method outperforms some mainstream methods both on the synthetic dataset and the real dataset.
Key words : single image deraining;deep learning;convolution neural network;dense connection

0 引言

    在雨天所采集的圖像數據往往伴隨著明顯的質量退化,這對目標檢測、目標跟蹤等視覺算法造成極大影響。因此,去雨算法成為了當下研究熱點之一。

    相比于傳統的圖像處理方法,深度學習在去雨效果上已經有了長足進步,但還是不能很好地解決完整去除雨線的同時不丟失原有細節信息這一問題。由于雨線的大小、形狀不盡相同,單一的網絡結構可能只對某一尺度的雨線敏感,這將導致去雨后圖片仍有雨線殘留,去雨效果不佳。而且圖像中往往包含大量細節信息,如條紋、圖案等,網絡無法準確區分特征是否屬于背景細節,導致這些“偽雨線”被去除,圖像丟失有效內容。這將極大影響圖像去雨質量。

    針對以上難點,本研究提出了基于深度密集連接控制網絡的圖像去雨算法。該網絡通過卷積模塊之間的密集連接融合不同層次的細節特征,能夠充分提取雨線信息。基于特征約束的思想,將控制特性引入到網絡中,控制不同階段特征的表達程度,從而更好地模擬雨線映射,取得理想的去雨效果。




本文詳細內容請下載:http://www.xxav2194.com/resource/share/2000003252




作者信息:

李  蔚,安鶴男,劉  佳,涂志偉,張昌林

(深圳大學 電子與信息工程學院,廣東 深圳518061)

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 欧美日韩亚洲国产精品一区二区| 91精品欧美产品免费观看| 日产乱码卡一卡2卡3视频| 亚洲欧美日韩精品专区| 老司机在线免费视频| 国产福利91精品一区二区| www国产无套内射com| 日韩a在线观看| 亚洲欧美日韩精品中文乱码| 美女图片在线视频精品播放| 国产成人精品免费视频大全五级 | 在线日韩麻豆一区| 中文字幕日韩在线观看| 欧美午夜一区二区福利视频| 免费又黄又爽1000禁片| 视频黄页在线观看| 国产精品亚洲а∨无码播放不卡| shkd-443夫の目の前で犯| 无翼乌全彩无遮挡动漫视频| 亚洲中文字幕无码一区| 激情五月婷婷网| 午夜影院在线视频| 超级无敌科技帝国| 国产激情视频网站| 97久久天天综合色天天综合色hd| 工作女郎在线看| 久久一日本道色综合久| 柠檬福利第一导航在线| 亚洲爆乳精品无码一区二区三区| 精品人妻少妇一区二区| 国产一级黄色片子| 91成人免费版| 国产精品免费av片在线观看| 最新国产成人ab网站| 人人妻久久人人澡人人爽人人精品| 老婆~我等不及了给我| 国产成人AV综合色| 香蕉视频网站在线观看| 在线一区二区三区| 一二三四在线观看免费高清视频 | 国产精品久久国产三级国不卡顿 |