《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 改進的TF-IDF算法在文本分類中的研究
改進的TF-IDF算法在文本分類中的研究
信息技術與網絡安全
張 偉1,2,石 倩1,何 霄1,王 晨1,李禾香1,李驥然1
(1.中國石油工程技術研究院有限公司 北京石油機械有限公司,北京102206; 2.中國人民大學 信息學院,北京100872)
摘要: 企業數字化建設過程中,對大量日常經營活動文本的數字化處理通常是多任務的,需要對文本數據同時完成信息抽取和文本分類任。在此應用場景下,為了實現更加精準的分類效果,提出一種改進的TF-IDF算法,將文本信息抽取結果也作為文本重要類別區分特征。通過引入信息增益方法得到改進的權重計算公式,進而得到改進的文本特征向量空間表示,再構建文本分類模型。實驗以石油行業中文文本為例,選取測試文本2 006條進行文本分類對比實驗,實驗結果表明改進的TF-IDF算法精確率P達到99.3%,召回率R達到98.7%,相比于傳統TF-IDF算法文本分類效果得到顯著提高。
中圖分類號: TP391
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.07.012
引用格式: 張偉,石倩,何霄,等. 改進的TF-IDF算法在文本分類中的研究[J].信息技術與網絡安全,2021,40(7):72-76,83.
Research on improved TF-IDF algorithm in text classification
Zhang Wei1,2,Shi Qian1,He Xiao1,Wang Chen1,Li Hexiang1,Li Jiran1
(1.Beijing Petroleum Machinery Co.,Ltd.,China Petroleum Engineering Technology Research Institute, Beijing 102206,China; 2.School of Information,Renmin University of China,Beijing 100872,China)
Abstract: In the process of digital construction of enterprises, the digital processing of a large number of daily business activity texts of enterprises is usually multi-task, and it is necessary to complete information extraction tasks and text classification tasks for text data at the same time. In this application scenario, in order to achieve a more accurate text classification effect, this paper proposes an improved TF-IDF algorithm, which uses the text information extraction result as the distinguishing feature of important text categories, and introduces the information gain method to obtain an improved weight calculation formula. Then an improved text feature vector space representation is obtained, and then a text classification model is constructed. The experiment takes the Chinese text of the petroleum industry as an example, and selects 2 006 test texts for text classification comparison experiments. The experimental results show that the improved TF-IDF algorithm has an accuracy rate P of 99.99% and a recall rate R of 99.87%. The algorithm text classification effect has been significantly improved.
Key words : text classification;VSM;TF-IDF;petroleum;support vector machine

0 引言

TF-IDF算法結構簡單,類別區分力強,且容易實現,被廣泛應用于信息檢索、文本挖掘、文本分類、信息抽取等領域中。但是,該算法僅考慮詞頻方面的因素,沒有考慮詞語出現的位置、詞性、樣本分布等信息,存在一定局限性。對此很多研究者都提出過改進算法,王小林在傳統TF-IDF算法基礎上,提出利用段落標注技術,對處于不同位置的詞語給予不同的位置權重,并對分詞結果中詞頻較高的同詞性詞語進行相似度計算,合并相似度較高的詞語,改進傳統算法中忽視特征詞位置因素和語義對相似度的問題[1]。覃世安針對傳統TF-IDF算法在分類文本類的數量分布不均時提取特征值效果差的問題,提出使用特征值在類間出現的概率比代替特征值在類間出現次數的改進TF-IDF算法[2]。葉雪梅認為傳統的特征詞權重TF-IDF算法未考慮到網絡新詞,針對特征項中的新詞對分類結果的影響給予不同權重值,提出基于網絡新詞改進文本分類TF-IDF算法[3]。這些改進算法都有效提高了模型性能,優化分類結果,取得了不錯的實驗效果。但以往改進算法研究主要集中在通過完善算法本身的缺陷以實現詞條在文本中更加準確的權重賦值,忽略了其他類別區分特征因子。



本文詳細內容請下載:http://www.xxav2194.com/resource/share/2000003681




作者信息:

張  偉1,2,石  倩1,何  霄1,王  晨1,李禾香1,李驥然1

(1.中國石油工程技術研究院有限公司 北京石油機械有限公司,北京102206;

2.中國人民大學 信息學院,北京100872)


此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 97久久精品亚洲中文字幕无码| 天天干夜夜操视频| 成人黄色免费网站| 大屁股熟女一区二区三区| 国产精品无码午夜福利| 国产日产卡一卡二乱码| 国产丝袜无码一区二区视频| 午夜网站免费版在线观看| 亚洲网站免费看| 亚洲av无码不卡久久| 久久久久久亚洲精品| а√天堂地址在线| 99re6在线精品视频免费播放| 天天拍天天干天天操| 老婆~我等不及了给我| 精品一二三四区| 欧美日韩一区二区三区四区| 日韩欧美一区二区三区免费观看| 成年免费视频黄网站在线观看| 婷婷久久综合网| 国产精品无圣光一区二区| 国产区精品一区二区不卡中文| 伊人久久精品亚洲午夜| 免费黄网站在线看| 国产女人乱子对白AV片| 国产男女猛视频在线观看| 国产日韩欧美中文字幕| 午夜网站在线观看免费网址免费| 免费人妻无码不卡中文字幕18禁| 亚洲国产成人久久综合区| 久久99精品久久久久久不卡| JIZZYOU中国少妇| 青青青亚洲精品国产| 波多野吉衣一区二区| 日本一卡2卡3卡4卡无卡免费| 国内国产真实露脸对白| 国产va免费精品高清在线| 亚洲成年人网址| 中文字幕国产专区| 伊人影视在线观看日韩区| 精品午夜久久网成年网|