《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 其他 > 設(shè)計(jì)應(yīng)用 > 基于深度網(wǎng)絡(luò)的推薦系統(tǒng)偏置項(xiàng)改良研究
基于深度網(wǎng)絡(luò)的推薦系統(tǒng)偏置項(xiàng)改良研究
信息技術(shù)與網(wǎng)絡(luò)安全
張?zhí)煳?/div>
(山東省計(jì)算中心(國(guó)家超級(jí)計(jì)算濟(jì)南中心),山東 濟(jì)南250014)
摘要: 傳統(tǒng)的矩陣分解算法為用戶和項(xiàng)目分別獨(dú)立設(shè)置了偏置項(xiàng),而沒有深入挖掘特定用戶對(duì)于特定項(xiàng)目的隱性偏好;同時(shí),傳統(tǒng)的排序預(yù)測(cè)推薦算法將用戶所有打分過的項(xiàng)目都統(tǒng)一地設(shè)置為該用戶的正例項(xiàng)目(無論用戶給出了好評(píng)還是差評(píng)),這導(dǎo)致訓(xùn)練完成的系統(tǒng)在實(shí)際應(yīng)用中很可能會(huì)為用戶繼續(xù)推薦其厭惡的項(xiàng)目。因此提出了一種基于深度網(wǎng)絡(luò)的推薦系統(tǒng)偏置項(xiàng)改良方案,該改良方案考慮了用戶為特定項(xiàng)目所作的評(píng)分背后所蘊(yùn)含的好惡態(tài)度,并學(xué)習(xí)出一個(gè)用戶-項(xiàng)目聯(lián)合偏置項(xiàng)加入到推薦過程中以提升推薦性能。在三個(gè)公開數(shù)據(jù)集上進(jìn)行的對(duì)比實(shí)驗(yàn)結(jié)果表明,該改良方案可以有效地提升推薦的性能表現(xiàn)。
中圖分類號(hào): TP391
文獻(xiàn)標(biāo)識(shí)碼: A
DOI: 10.19358/j.issn.2096-5133.2021.08.007
引用格式: 張?zhí)煳? 基于深度網(wǎng)絡(luò)的推薦系統(tǒng)偏置項(xiàng)改良研究[J].信息技術(shù)與網(wǎng)絡(luò)安全,2021,40(8):42-46.
Research on improvement of bias in recommendation system based on deep neural network
Zhang Tianwei
(Shandong Computer Science Center(National Super Computer Center in Jinan),Jinan 250014,China)
Abstract: Traditional matrix factorization algorithm sets bias for users and items independently, without digging into the latent preferences of specific users for specific items. As in traditional ranking prediction recommendation algorithm, all the rated items of a user are uniformly set as the user′s positive items(regardless of whether the user gives a good or a bad review). As a result, the trained system is likely to continue to recommend projects that users hate in practical applications. Therefore, an improved bias improvement scheme of recommendation system based on deep neural network is proposed, which takes into account the liking and disliking behind the ratings made by users for specific items, and a joint bias is learned for the recommendation process. The results of comparative experiments on three open datasets show that the improved scheme can effectively improve the recommended performance.
Key words : recommendation algorithm;collaborative filtering;deep neural network;implicit feedback


0 引言

隨著互聯(lián)網(wǎng)的迅猛發(fā)展,用戶想要從海量的信息中獲取自己真正感興趣的內(nèi)容已經(jīng)變成了一件頗有挑戰(zhàn)性的工作。解決這種“信息過載”問題的常用技術(shù)之一就是推薦系統(tǒng)[1-2]。推薦系統(tǒng)往往利用用戶對(duì)于項(xiàng)目的歷史交互數(shù)據(jù)信息(如評(píng)分、評(píng)論、歷史購(gòu)買記錄等)[3]建立模型來挖掘用戶與項(xiàng)目之間的隱性關(guān)聯(lián)[4-5],從而得以為用戶推薦與其喜好的歷史交互項(xiàng)目高度相似的新項(xiàng)目,幫助用戶篩選出其需要的信息[6-7]。




本文詳細(xì)內(nèi)容請(qǐng)下載:http://www.xxav2194.com/resource/share/2000003723





作者信息:

張?zhí)煳?/p>

(山東省計(jì)算中心(國(guó)家超級(jí)計(jì)算濟(jì)南中心),山東 濟(jì)南250014)


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 国产老师的丝袜在线看| 欧美性色欧美a在线播放| 国产第一页屁屁影院| www香蕉视频| 日韩一区二区三区免费体验| 亚洲精品无码不卡| 美女开嫩苞视频在线播放| 国产无遮挡吃胸膜奶免费看 | 国产日韩一区二区三区| tubesex69| 日本xxxxx19| 亚洲va国产va天堂va久久| 玉蒲团之天下第一| 啊~嗯~轻点~啊~用力村妇| 黄色片免费网站| 国内国外精品影片无人区| 一级黄色免费毛片| 日本精品ova樱花动漫| 亚洲国产成人精品女人久久久| 男女久久久国产一区二区三区| 国产XXX69麻豆国语对白| 国产精品三级视频| 国产精品日韩欧美久久综合| www.色人阁.com| 无码aⅴ精品一区二区三区| 五月婷婷伊人网| 欧美日韩亚洲区久久综合| 免费不卡中文字幕在线| 老头一天弄了校花4次| 国产疯狂露脸对白| 888米奇四色极速在线观看| 思思91精品国产综合在线| 久久久久久夜精品精品免费啦| 樱桃视频影院在线播放| 亚洲欧美中文日韩欧美| 狠狠色综合久久婷婷色天使| 午夜电影在线看| 老熟女高潮一区二区三区| 国产在线91精品入口| 欧美bbbbbxxxxx| 国产精品多p对白交换绿帽|