《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于動態圖注意力聚合多跳鄰域的實體對齊
基于動態圖注意力聚合多跳鄰域的實體對齊
2022年電子技術應用第11期
汪浣沙1,2,黃瑞陽1,2,宋旭暉3,余詩媛3,胡 楠3
1.國家數字交換系統工程技術研究中心,河南 鄭州450002; 2.中國人民解放軍戰略支援部隊信息工程大學,河南 鄭州450002;3.鄭州大學 軟件學院,河南 鄭州450001
摘要: 實體對齊是實現對不同來源知識庫進行融合的重要技術方法,在知識圖譜、知識補全領域具有廣泛應用。現有基于圖注意力的實體對齊模型多使用靜態圖注意力網絡且忽略了實體屬性中的語義信息,導致模型存在有限注意、難以擬合、表達能力不足等問題。針對這些問題,開展基于動態圖注意力結構建模實體對齊方法研究,首先使用圖卷積層建模目標實體的單跳節點表示,其次應用動態圖注意力網絡獲得多跳節點注意力系數并建模,再次利用逐層門控網絡聚合圖卷積層與動態圖注意力層輸出的單跳、多跳節點信息,最后拼接通過外部知識預訓練自然語言模型提取的實體名稱屬性嵌入并進行相似度計算。該方法在DBP15K的三類跨語言數據集中都獲得了一定的提高,證明了應用動態圖注意力網絡與融入實體屬性語義在提高實體表示能力上的有效性。
中圖分類號: TP393
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.222717
中文引用格式: 汪浣沙,黃瑞陽,宋旭暉,等. 基于動態圖注意力聚合多跳鄰域的實體對齊[J].電子技術應用,2022,48(11):51-56.
英文引用格式: Wang Huansha,Huang Ruiyang,Song Xuhui,et al. Entity alignment based on dynamic graph attention aggregation in multi-hop neighborhood[J]. Application of Electronic Technique,2022,48(11):51-56.
Entity alignment based on dynamic graph attention aggregation in multi-hop neighborhood
Wang Huansha1,2,Huang Ruiyang1,2,Song Xuhui3,Yu Shiyuan3,Hu Nan3
1.National Digital Switching System Engineering & Technological R&D Center,Zhengzhou 450002,China; 2.Information Engineering University,Zhengzhou 450002,China;3.Software College,Zhengzhou University,Zhengzhou 450001,China
Abstract: Entity alignment is an important technical method to realize the fusion of knowledge bases from different sources. It is widely used in the fields of knowledge graph and knowledge completion. The existing entity alignment models based on graph attention mostly use static graph attention network and ignore the semantic information in entity attributes, resulting in the problems of limited attention, difficult fitting and insufficient expression ability of the model. To solve these problems, this paper studies the entity alignment method based on the structure modeling of dynamic graph attention. Firstly, the single hop node representation of the target entity is modeled by GCN. Secondly, the multi hop node attention coefficient is obtained and entity modeled by using the dynamic graph attention network, and then the single hop and multi hop node information output by GCN and dynamic graph attention layer is aggregated by layer-wise gating network. Finally, the entity attribute semantic extracted by external knowledge pre training natural language model is embedded and concatenated to calculate similarity. This method has been improved in three types of cross language datasets of DBP15K, which proves the effectiveness of applying dynamic graph attention network and integrating entity attribute semantics in improving entity representation ability.
Key words : dynamic GAT;graph convolution network;entity alignment;knowledge graph;representation learning

0 引言

    實體對齊任務指利用模型或算法判斷多個不同表示的實體是否指代現實世界中的同一對象,隨著知識圖譜因其結構性表示知識等優勢而在各大自然語言處理與計算機視覺領域任務中廣泛應用,實體對齊作為知識圖譜補全任務的重要組成部分受到越來越多研究者的關注。

    現有實體對齊方法主要分為基于轉移距離模型與基于圖卷積網絡模型,即利用轉移距離模型或圖卷積網絡將多源實體表示為低維向量并計算相似性以找到對齊實體對。目前主流的基于圖卷積網絡的實體對齊模型常使用傳統的靜態圖注意力網絡對實體進行特征提取與語義建模,但靜態圖注意力網絡注意力函數存在單調性,即對于任意查詢節點i,圖注意力網絡都傾向給予同一節點j更高的注意力權重,這將會嚴重影響網絡的特征提取能力。而文獻[1]所提出的動態圖注意力網絡中每個查詢(Query)對鍵(Key)的注意系數都有不同的排序,因此具有更強的表示能力。圖1展示了靜態與動態圖注意力網絡注意力傾向示意。




本文詳細內容請下載:http://www.xxav2194.com/resource/share/2000005004。




作者信息:

汪浣沙1,2,黃瑞陽1,2,宋旭暉3,余詩媛3,胡  楠3

(1.國家數字交換系統工程技術研究中心,河南 鄭州450002;

2.中國人民解放軍戰略支援部隊信息工程大學,河南 鄭州450002;3.鄭州大學 軟件學院,河南 鄭州450001)




wd.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 老汉扛起娇妻玉腿进入h文| a级毛片免费观看在线播放| 欧美日韩在线一区| 啊快点再快点好深视频免费| jizz黄色片| 天天天天天天操| 中文字幕在线视频在线看| 柳岩aa一一级毛片| 亚洲精品乱码久久久久久按摩 | 老少配老妇老熟女中文普通话| 国产精品亚洲色图| eeuss鲁片一区二区三区| 日产乱码卡一卡2卡3卡.章节| 亚洲人成www在线播放| 特级做a爰片毛片免费看一区 | √天堂中文官网8在线| 日日夜夜操天天干| 乱色精品无码一区二区国产盗| 毛片网站免费在线观看| 免费高清日本1在线观看| 足本玉蒲团在线观看| 国产永久免费高清在线观看视频| 97日日碰人人模人人澡| 娇小老少配xxxxx丶| 久久99精品国产麻豆宅宅| 最近中文字幕高清中文字幕无| 亚洲欧美久久精品| 理论片yy4408在线观看| 又粗又紧又湿又爽的视频| 高铁上要了很多次| 国产激情小视频| 5x社区精品视频在线播放18| 天天射天天色天天干| 一级特黄女**毛片| 无人在线观看视频高清视频8| 久久精品亚洲视频| 机机对机机的30分钟免费软件| 亚洲成av人片在线观看| 热99re久久免费视精品频软件| 免费福利小视频| 给我免费播放片黄色|