《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于CNN和GRU的高階調制自動編碼器研究
基于CNN和GRU的高階調制自動編碼器研究
2023年電子技術應用第5期
蔚淦丞1,2,3,廖明軍1,2,3,劉俊杰1,2,3,周雄1,2,3
(1.重慶郵電大學 通信與信息工程學院,重慶 400065;2.先進網絡與智能互聯技術重慶市高校重點實驗室,重慶 400065; 3.泛在感知與互聯重慶市重點實驗室,重慶 400065)
摘要: 基于深度學習的自動編碼器是替代傳統通信發射器和接收器的一種新方法。提出了一種基于卷積神經網絡(Convolutional Neural Network, CNN)和門遞歸單元(Gate Recurrent Unit, GRU)的自動編碼器,集成了星座映射和信道編碼功能。設計了一種并行CNN結構,并將輸入比特流進行分段的one-hot編碼。這樣做有兩個優點:(1)與不分段的one-hot編碼相比,數據的維度降低了;(2)數據的稀疏性降低,這使網絡可以更快更好地收斂。此外,引入GRU以實現信道編碼。所提出的模型可以應用于高階調制如4096QAM信號,在加性高斯白噪聲(AWGN)信道和瑞利信道下都有著優于傳統方法的性能。
中圖分類號:TN92
文獻標志碼:A
DOI: 10.16157/j.issn.0258-7998.223583
中文引用格式: 蔚淦丞,廖明軍,劉俊杰,等. 基于CNN和GRU的高階調制自動編碼器研究[J]. 電子技術應用,2023,49(5):41-46.
英文引用格式: Yu Gancheng,Liao Mingjun,Liu Junjie,et al. High order modulation autoencoder based on CNN and GRU[J]. Application of Electronic Technique,2023,49(5):41-46.
High order modulation autoencoder based on CNN and GRU
Yu Gancheng1,2,3,Liao Mingjun1,2,3,Liu Junjie1,2,3,Zhou Xiong1,2,3
(1.School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; 2.Advanced Network and Intelligent Connection Technology Key Laboratory of Chongqing Education Commission of China, Chongqing 400065, China; 3.Chongqing Key Laboratory of Ubiquitous Sensing and Networking, Chongqing 400065, China)
Abstract: Autoencoder (AE) based on deep learning is a new method to replace traditional communication transmitter and receiver. This paper proposes an autoencoder based on Convolutional Neural Network (CNN) and Gate Recurrent Unit (GRU), which integrates constellation mapping and channel coding. Specifically, this paper designs a parallel CNN structure and segment the input bitstream for one-hot encoding, which has two advantages:(1) Compared with the original one-hot encoding, the dimension of the input data is reduced; (2) The features of the data are not too sparse, which allows the network to converge faster and better. In addition, the GRU is introduced for channel coding. The proposed model can be applied to high-order modulation such as 4096QAM signal, and has better performance than traditional methods under both added white Gaussian noise (AWGN) channels and Rayleigh channels.
Key words : autoencoder;CNN;GRU;deep learning

0 引言

無線通信要解決的主要問題是如何從包含噪聲和干擾的接收信號中盡可能無差錯地恢復發送信號。傳統方法通常以模塊化的方式設計和實現發射器和接收器,將每個模塊單獨優化以獲得可靠的通信系統。然而這種“貪心”地將每個模塊優化到最佳,并不意味著整個系統的性能達到了最佳。這是傳統通信系統長期存在的系統偏差。

近年來,隨著神經網絡在計算機視覺、自然語言處理等領域的成功,無線通信領域也涌現出大量與深度學習結合的相關研究。基于深度學習的端到端通信系統可以聯合優化發送器和接收器,因此神經網絡有很大的潛力成為下一代無線通信的主流技術。當發射器和接收器分別被視為編碼器和解碼器,整個通信系統可以被視為一個自動編碼器。而這個自動編碼器唯一的優化目標就是信號的恢復精度——這也是衡量通信系統性能的唯一指標。



本文詳細內容請下載:http://www.xxav2194.com/resource/share/2000005322




作者信息:

蔚淦丞1,2,3,廖明軍1,2,3,劉俊杰1,2,3,周雄1,2,3

(1.重慶郵電大學 通信與信息工程學院,重慶 400065;2.先進網絡與智能互聯技術重慶市高校重點實驗室,重慶 400065;3.泛在感知與互聯重慶市重點實驗室,重慶 400065)


微信圖片_20210517164139.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 羞羞漫画在线成人漫画阅读免费| sao货水真多好浪好紧视频| 欧美高清性XXXXHDVIDEOSEX| 国产乱人伦偷精品视频免下载| 91精品国产高清久久久久久| 成年女人18级毛片毛片免费观看| 亚洲国产成人久久77| 精品一区二区三区免费视频| 国产午夜精品无码| 337p人体欧洲人体亚| 女人脱裤子让男生桶的免费视频 | 黄页网站免费在线观看| 国内精品久久久久国产盗摄| 中文字幕一区二区三区乱码| 曰批全过程免费视频网址| 亚洲色大成网站www永久| 自拍另类综合欧美小说| 国产欧美一区二区久久| 99久在线观看| 希岛婚前侵犯中文字幕在线| 久久久精品中文字幕麻豆发布| 欧美伊久线香蕉线新在线| 亚洲视频综合网| 精品国产免费一区二区| 国产亚洲成AV人片在线观看| 四虎最新永久免费视频| 在线91精品亚洲网站精品成人 | 中日韩国语视频在线观看| 最近中文字幕免费mv视频7| 亚洲第九十七页| 里番acg里番本子全彩| 国产精品一区二区香蕉| 999无色码中文字幕| 婷婷色天使在线视频观看| 久久91精品国产91久| 日韩欧美亚洲视频| 亚洲人xxx日本人18| 欧美黄色第一页| 你是我的城池营垒免费观看完整版 | 真实乱视频国产免费观看| 四虎影视永久在线精品免费|