《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 設計應用 > 基于深度自編碼器的智能電網竊電網絡攻擊異常檢測
基于深度自編碼器的智能電網竊電網絡攻擊異常檢測
電子技術應用
黃燕1,李金燦1,楊霞琴2,李佩2,李梓3
1.廣西電網有限責任公司,廣西 南寧 530023;2.廣西電網有限責任公司南寧供電局,廣西 南寧 530000; 3.廣西電網有限責任公司梧州供電局,廣西 梧州 543002
摘要: 現有AMIs中的異常檢測器存在淺層架構,難以捕獲時間相關性以及電力消耗數據中存在的復雜模式,從而影響檢測性能。提出基于長短期記憶(LSTM)的序列對序列(seq2seq)結構的深度(堆棧)自編碼器。自動編碼器結構的深度有助于捕獲數據的復雜模式,seq2seq LSTM模型可以利用數據的時間序列特性。研究了簡單自編碼器、變分自編碼器和注意自編碼器(AEA)的性能,得出在這3種自編碼器采用seq2seq結構時檢測性能優于全連接結構。仿真結果表明,帶有注意力機制的檢測器(AEA)檢出率和虛警率分別比現有性能最好的檢測器高4%~21%和4%~13%。
中圖分類號:TM28 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.234395
中文引用格式: 黃燕,李金燦,楊霞琴,等. 基于深度自編碼器的智能電網竊電網絡攻擊異常檢測[J]. 電子技術應用,2024,50(2):76-82.
英文引用格式: Huang Yan,Li Jincan,Yang Xiaqin,et al. Anomaly detection of smart grid stealing network attacks based on deep autoencoder[J]. Application of Electronic Technique,2024,50(2):76-82.
Anomaly detection of smart grid stealing network attacks based on deep autoencoder
Huang Yan1,Li Jincan1,Yang Xiaqin2,Li Pei2,Li Zi3
1.State Grid Guangxi Power Supply Company,Nanning 530023, China;2.State Grid Nanning Power Supply Company,Nanning 530000, China;3.State Grid Wuzhou Power Supply Company,Wuzhou 543002, China
Abstract: Existing anomaly detectors in AMIs suffer from shallow architectures, which impede their ability to capture temporal correlations and complex patterns in electricity consumption data, thus impact detection performance adversely. A deep (stacked) autoencoder structure based on Long Short-Term Memory (LSTM) with a sequence-to-sequence (seq2seq) configuration is proposed. The depth of the autoencoder architecture is beneficial for capturing complex data patterns, and the seq2seq LSTM model effectively utilizes the temporal sequential characteristics of the data. The performance of simple autoencoders, variational autoencoders, and Attention Enhanced Autoencoders (AEA) was studied, revealing that using the seq2seq structure in these three types of autoencoders results in superior detection performance compared to fully connected architectures. Simulation results demonstrate that the detector with an attention mechanism (AEA) achieves a 4%~21% higher detection rate and a 4%~13% lower false alarm rate compared to the best-performing existing detectors.
Key words : autoencoder;deep machine learning;power stealing;hyperparameter optimization;sequence-to-sequence

引言

電力盜竊不僅會使電網過載,還會對電網的穩定性和效率產生負面影響。因此提出了使用機器學習模型來識別電力盜竊[1-2]。基于機器學習的檢測器包括監督分類器和異常檢測器。監督分類器包括淺層機器學習分類器,如樸素貝葉斯[3]和支持向量機(SVM)[4],還有基于決策樹和SVM的兩步檢測器[5]。雖然上述分類器檢測準確率高,但過于依賴于客戶耗電數據的良性和惡意樣本的可用性,只能檢測到已經訓練過的攻擊類型。


本文詳細內容請下載:

http://www.xxav2194.com/resource/share/2000005859


作者信息:

黃燕1,李金燦1,楊霞琴2,李佩2,李梓3

1.廣西電網有限責任公司,廣西 南寧 530023;2.廣西電網有限責任公司南寧供電局,廣西 南寧 530000; 3.廣西電網有限責任公司梧州供電局,廣西 梧州 543002


weidian.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 欧美bbbbxxxx| 中文字幕人妻第一区| 男人把女人狂躁的免费视频| 国产欧美精品一区二区三区| 一个人看的www视频免费在线观看| 日韩精品无码一区二区三区| 亚洲色欲久久久综合网东京热 | 免费国产剧情视频在线观看 | 无遮掩60分钟从头啪到尾| 亚洲小视频在线播放| 精品久久久久久中文| 国产又猛又黄又爽| 2018天天弄| 天天插在线视频| 中文字幕无码无码专区| 极品美女aⅴ高清在线观看| 亚洲色婷婷六月亚洲婷婷6月| 羞羞漫画小舞被黄漫免费| 国产欧美成人免费观看| 91高清免费国产自产拍2021| 快穿之丁柔肉h暗卫温十三| 久久精品国产69国产精品亚洲| 欧美日韩在线成人| 俄罗斯激情女同互慰在线| 老子影院午夜伦不卡亚洲| 国产成人在线免费观看| 136av导航| 夜色资源网站www| 一级特黄aaa大片大全| 日本人强jizzjizz| 乱人伦人妻中文字幕| 欧美日韩电影在线观看| 人妻少妇偷人精品无码| 精品欧美日韩一区二区| 国产在线午夜卡精品影院| xxxxx亚洲| 国产综合色在线视频区| 一区二区三区在线免费看| 手机看片福利在线| 久久亚洲精品11p| 最新黄色免费网站|