《電子技術應用》
您所在的位置:首頁 > 電源技術 > 設計應用 > 品質因數與共振頻率對無線電能傳輸的影響
品質因數與共振頻率對無線電能傳輸的影響
2015年電子技術應用第3期
董 燕,余 亮,李 琳,梁 齊
合肥工業大學 電子科學與應用物理學院,安徽 合肥230026
摘要: 諧振耦合式無線電能傳輸技術是一種新興電能傳輸方式,提高傳輸功率和效率已成為其應用發展的瓶頸問題。通過仿真與實驗探究了提高頻率和改善線圈參數兩種不同提高系統品質因數的方法對能量傳輸效率、功率與傳輸距離之間的影響規律。結果表明,提高系統共振頻率可明顯提高系統能量有效傳輸距離,但導致最高輸出功率明顯下降,而對傳輸效率影響不明顯;改善線圈參數可顯著提高最高輸出功率,而對輸出效率和有效傳輸距離影響不明顯。系統頻率響應仿真與實驗結果顯示,小幅偏離共振頻率點引起輸出功率急劇下降。系統共振頻率隨接收端與發射端間耦合系數增加出現分裂現象,造成能量傳輸功率下降。
中圖分類號: TN7
文獻標識碼: A
文章編號: 0258-7998(2015)03-0133-04
Effect of quality factor and resonant frequency on wireless energy transfer system
Dong Yan,Yu Liang,Li Lin,Liang Qi
School of Electronic Science & Applied Physics,Hefei University of Technology,Hefei 230026,China
Abstract: Wireless energy transfer based on resonant has been an emerging power transmission technology, increasing its transmit power and efficiency is the bottleneck for its practical application. This paper investigates the effect of quality factor(Q) of the circle and the circuit on transmission efficient and power through simulation and experiments. The results show that high Q circuit can markedly increase the energy transfer distance and decrease the maximum transfer power, but not obviously affect the transfer efficiency. High Q circle could greatly increase the maximum transfer power, however not distinctly affect the transfer efficiency and transfer distance. The transfer power would be sharply decreased when the input frequency slightly departs from the resonant frequency of the system. Simulation and experiments show that the resonant frequency would be split when the coupling of the emission coil and the receiver coil is larger than a certain value, and simultaneously the transfer power would be decreased.
Key words : magnetic resonant coupling;quality factor;frequency response;frequency splitting

  

0 引言

  無線電能傳輸概念最早由尼古拉·特斯拉提出并開展實驗研究[1]。與傳統的有線供電技術相比[2],無線電能傳輸可實現電源與用電負載間完全的電氣隔離,避免接觸放電等安全隱患,具有安全、可靠、靈活等無可比擬的優點[3]。經過多年的研究發展,無線電能已衍生微波、無線電波、激光、超聲波等輻射傳輸模式和電磁感應、諧振耦合兩種非輻射傳輸模式[4],它們都有各自的優缺點[5-6]。

  電磁感應式是過去二十幾年來無線電能傳輸技術發展的主要形式,目前已有電動牙刷、電動剃須刀等商業化產品推向市場。雖然感應式無線電能傳輸的效率一般較高,能達到80%甚至90%,但其傳輸距離很短,使其不能滿足最廣泛的應用需求;在此背景下,MIT的Marin Soljacic教授團隊提出利用磁共振耦合方式提高傳輸距離的思想,先后實現了2 m、60 W至5 m、800 W的無線能量傳輸[7],從而掀起了磁諧振耦合式無線電能傳輸技術的研究熱潮。相較電磁感應傳輸模式,該模式有效能量傳輸距離明顯提高,已進入中程距離的傳輸范圍,應用范圍將更加廣泛,但其傳輸效率和功率存在較大下降,效率僅能達到40%左右,且隨著傳輸距離的增加而急劇下降。因此,如何有效提高傳輸功率和效率,是目前磁諧振耦合無線電能傳輸技術的發展瓶頸。對此技術的研究無論是在國內還是在國際上目前仍處于起步階段,耦合模理論[8-9]、電路理論[10]等理論模型已相繼指出保證諧振系統工作在共振頻點附近是系統進行高效率能量傳遞的基本條件,在其基礎上提高品質因數可提高系統傳輸效率。

  本文采用電路理論及仿真技術分析了提高共振能量傳輸效率的方法,并通過實驗對提高頻率和改善線圈參數兩種不同提高系統品質因數的方法對能量傳輸效率、功率與傳輸距離之間的影響規律,這對于合理設計線圈參數和驅動電路具有十分重要的指導價值。最后通過頻率響應頻率分裂的仿真分析揭示了系統工作在共振頻率點的重要性。

1 理論分析

  諧振耦合式無線電能傳輸通過具有相同諧振頻率的兩個線圈共振實現電能傳輸,工作過程為:發射電路產生高頻信號供給發射線圈,線圈中交變電流在諧振體(線圈加外接電容)周圍產生高頻交變磁場;當接收線圈與發射線圈的諧振頻率一致時,接收線圈與發射線圈產生共振,線圈之間開始能量傳遞;負載電路把接收線圈中的能量轉換為適合負載工作的電壓。諧振系統可分為串聯諧振方式與并聯諧振方式,與電磁感應耦合相同,諧振耦合按電容的接入方式可分為SS、SP、PS、PP 4種[11]。本文以SS型為例進行分析。圖1為相應的等效電路圖。其中R1、R2、C1、C2都為線圈在高頻下的寄生參數,L1、L2為線圈的電感量,Rs為驅動電路等效電阻,RL為負載的電阻值。

  兩線圈諧振時諧振角頻率?棕=(L1C1)-1/2=(L2C2)-1/2。列KVL方程推導出[12-13]接收端的功率與效率:

  12.png

  其中發射端與接收端的耦合系數為:k=M(L1L2)-1/2,電路品質因數為:Q1=wL1(RS+R1)-1,Q2=wL2(R2+RL)-1。

  M為兩線圈之間的互感[14],當兩端的線圈采用密繞空心線圈,可用下面的互感公式計算系統兩端的互感:

  3.png

  其中,真空磁導率,N1、N2為收發線圈的匝數,r1、r2為收發圈的半徑,D為兩線圈之間的距離。

  計算dPL/dk=0,得[15]:

  4.png

  即當k=Ko時,系統達到耦合臨界點,此時的輸出功率為系統的最大值。其中從k=M(L1L2)-1/2式中可以看出k與D3成反比,即Ko值越小,同等的輸出功率下傳輸距離越遠;從Ko式可看出提高系統的Q值可以減小在最大功率點的耦合系數,也就是使最大功率出現點的距離增加,而在相同的距離下提高輸出功率進而提高系統的傳輸效率。

2 仿真與實驗


001.jpg

  用電路軟件繪制如圖1所示的等效電路圖并進行仿真。根據表1所示,通過提高諧振頻率或者改變線圈參數所得到的系統品質因數,得出如圖2(a)所示的不同Q值對輸出功率影響的曲線圖。

  對參數進行合理配置,保證在改變系統諧振頻率時電路參數不變,而在改變線圈參數時系統頻率不變,給發射端線圈提供20 V的穩壓電源。測量在提高系統諧振頻率和增加線徑后的接收端的輸出電壓,并計算出對應的輸出功率繪制圖2(b)。系統參數如表1所示,不同方式改善的Q值具體值如表2所示。

001.jpg

002.jpg

  圖2給出了通過提高諧振頻率增加電路Q值和通過增加線圈線徑提高線圈Q值對輸出功率的影響。從圖2(a)的初始系統曲線可知,初始系統的最高輸出功率為3.2 W,最高輸出功率點在3.53 cm處;用提高工作頻率的方法把電路的Q值提高后發現,系統的最高輸出功率點右移到4.1 cm,但最高輸出功率降為2.5 W,這與頻率增加導致的線圈等效阻抗增加有關;改變繞制線圈的線徑來提高線圈的Q值,從增加線徑曲線可知,最高輸出功率提高到3.46 W,但最高功率發生點左移到3.1 cm。

  從圖2(a)中還可以看出3種不同Q值的電路最大輸出功率對應的距離分別為3.5 cm、4.1 cm、3.1 cm,由此算的Ko值分別為0.24、0.09、0.337,這與式(3)的計算相符。

  從圖2(b)中可以看出,3種不同Q值對應的輸出功率曲線與仿真曲線基本相符,但輸出功率比圖3(a)中的整體偏小,分析原因是由于具體實驗測試中存在接觸電阻,而在仿真中這些不可控的因素沒有考慮在內而造成的。同時在具體實驗中線圈采用手工繞制,使發射端與接收端的線圈電感有些不可忽略的偏差,而且線圈的電感和空載Q值是測量值,會有一定的誤差,這都是造成實驗不如仿真理想的原因。

  從式(2)中效率與k的關系式中可知效率是耦合系數k的遞減函數[13],即隨著k的減小而減小。而k與距離D3成反比,所以系統效率是隨距離增大而減小的,這種理論結果在仿真中得到了驗證,如圖3(a)是不同系統品質因數下對系統效率影響的仿真曲線,圖3(b)是相對應的實驗曲線。從圖3(a)的仿真曲線可以看出,提高諧振頻率系統效率有所提高,而通過改善線圈參數后提高的系統Q值輸出效率卻是下降的。圖3(b)從3 cm以后基本符合仿真規律,但當發射端與接收端的距離<3 cm后,系統頻率都是下降的,這與仿真不符,當兩端線圈很近時雙方的相互的反射電阻增大是其主要原因。

003.jpg

  諧振耦合式無線電能傳輸是基于發射端與接收端的線圈諧振頻率一致產生共振實現能量傳遞的,保證高效率傳輸的關鍵點在于使系統工作在共振頻率點上[5],本文也在仿真與實驗上驗證了這一點,具體如圖4所示。圖4中仿真曲線是仿真的頻率響應曲線,從圖中可知系統的共振頻率點為668 kHz,共振頻率點的輸出功率為3.2 W;實驗中共振頻率點為648 kHz,最高輸出功率為2.1 W;仿真與實驗間的共振頻率點之間的差異是由于在實際的工作電路中,通電后器件在工作中產生的熱量會使器件的值發生漂移,同時密繞的線圈一般忽略線圈自身分布電容,但實際上還是對電路諧振頻率有一定影響。圖4證明本系統能量傳輸是基于共振而不是傳統的電磁感應。

004.jpg

  文獻[9]提到當k>Ko,即當耦合系數大到一定值時,接收端負載電壓的頻率響應特性會出現兩個峰值點,而在原固有頻率點出現凹谷。同時當Q1≠Q2時,需滿足k/Ko≥[1/2(Q1/Q2+Q2/Q1)]1/2時才會出現頻率分裂,文章中發生頻率分裂時的耦合系數值 k=0.42,此時峰值高度下降,如圖5所示。在仿真中也觀測到頻率分裂現象,出現頻率分裂的峰谷下降(在本系統中Q1≠Q2),這驗證了文獻的理論分析。且當兩端品質因數相差越大時,發生頻率分裂后峰值下降幅度增大。

005.jpg

  在實際的實驗裝置中,左邊是用多股漆包線制的半徑為3.5 cm的基本線圈,右邊是大線徑的漆包線繞制的高Q值的線圈。

  綜上分析得知,雖然系統傳輸效率隨著耦合系數k增加而單調增加,但傳輸功率卻有個最大值。所以并不是k越大越好,當k大于一定值時會產生頻率分裂,導致系統失諧,使傳輸功率急速降低。另外用提高頻率的方式提高系統品質因數Q值可以獲得比較好的效率,提高最大功率點的傳輸距離,但最高輸出功率下降,這與頻率增加使系統的高頻等效電阻增加有關;改變線圈參數提高系統Q值有較好的最大輸出功率,但效率有所降低,這是因為本文采用增加線徑方式提高線圈Q值,在相同頻率下線圈的等效電阻比原來小,也就是減小了公式中R1、R2的值,這使系統的輸出功率增加。在實際的設計中要考慮到這一點,根據實際需要權衡好輸出功率與效率的關系,優化參數,在保證輸出功率和傳輸距離的同時兼顧傳輸效率。系統偏離共振頻率點會造成系統傳輸能力急劇下降,且當系統兩端的偶合系數大于一定值時,會發生頻率分裂,這會影響系統能量的有效傳輸,特別是當兩端的品質因數不相同時,頻率分裂的同時伴隨著峰值的下降,可以通過優化系統參數使系統的臨界耦合系數Ko大于1,這可以有效地預防系統頻率分裂的發生,因為系統在實際工作中耦合系數的最大值也不超過1。

3 結語

  本文介紹了諧振耦合式無線電能傳輸技術的基本原理和在實際應用中的優勢,通過提高頻率和改變線圈參數兩種提高系統品質因數方法對系統輸出功率和效率的影響進行分析,并對產生這種影響的原因作了探討。由于諧振耦合式無線電能傳輸技術是基于共振,仿真與實驗都表明保證系統工作在共振頻率點是實現能量高效傳輸的關鍵,同時在仿真試驗中觀察到頻率分裂現象,通過分析提出了防止頻率分裂的方法。通過以上的仿真與實驗分析,對如何優化參數實現諧振耦合式無線電能的高效傳輸具有一定的借鑒意義。

  參考文獻

  [1] BARRET J P,DONNELLEY M R R.Electricity at the colum-bian exposition[Z].1894:168-169.

  [2] 張文波,高強,程大偉,等.變電站在線監測系統中無線傳感器網絡的RETX算法[J].電力系統自動化,2012,36(10):86-89.

  [3] 張建華,黃學良.利用超聲波方式實現無線電能傳輸的可行性的研究[J].電工電能新技術,2011,30(2):66-69.

  [4] 陳凱楠,趙爭鳴,張藝明.磁耦合諧振式無線電能傳輸技術新進展[J].中國電機工程學報,2012,33(3):1-11.

  [5] 翟淵,孫躍,戴欣,等.磁共振模式無線電能傳輸系統建模與分析[J].中國電機工程學報,2012,32(12):155-160.

  [6] 曹津平,劉建明,李祥珍.面向智能配用電網絡的電力無線專網技術方案[J].電力系統自動化,2013,37(11):76-80.

  [7] ANDRE K.Wireless power transfer via strongly coupled mag-netic resonances[J].Sciencexpress,2007,317(5834):83-86.

  [8] KARALIS A,JOANNOPOULOS D J,SOLJACIC M.Efficient wireless non-radiative mid-range energy transfer[J].Annals of Physics,2008,323(1):34-48.

  [9] IMURA T,OKABE H,HORI Y.Basic experimental study on helical antennas of wireless power transfer for electric vehicles by using magnetic resonant couplings[C].Dearborn,MI,United states:IEEE Computer Society,2009.

  [10] 曲立楠.磁耦合諧振式無線能量傳輸機理的研究[D].哈爾濱:哈爾濱工業大學,2012.

  [11] 李松林.基于電磁感應耦合的無線電能傳輸的應用研究[Z].2011.

  [12] 傅文珍,張波,丘東元.頻率跟蹤式諧振耦合電能無線傳輸系統研究[J].變頻器世界,2009(8):41-46.

  [13] 毛銀花.用于無線傳感器網絡的磁共振式無線能量傳輸系統[D].哈爾濱:哈爾濱工業大學,2012.

  [14] MAZLOUMAN S J,MAHANFAR A,KAMINSKA B. Mid-range wireless energy transfer using inductive resonancefor wireless sensors[C].Simon Fraser University,2009:517-522.

  [15] HUNTER D.Non-radiative resonant wireless energy transfer[D].University of Saskatchewan Saskatoon,2013.


此內容為AET網站原創,未經授權禁止轉載。
欧美激情办公室aⅴ_国产欧美综合一区二区三区_欧美午夜精品久久久久免费视_福利视频欧美一区二区三区

          国产精品有限公司| 久久久青草婷婷精品综合日韩| 极品尤物久久久av免费看| 欧美视频不卡| 韩国一区二区三区美女美女秀| 欧美日本韩国在线| 亚洲精品欧洲| 久久综合亚州| 99爱精品视频| 欧美国产日本| 亚洲乱码久久| 欧美三级小说| 午夜在线一区二区| 久久精品综合| 日韩一区二区免费看| 午夜久久一区| 亚洲欧美日韩视频二区| 国产精品大片| 久久一区免费| 国产日韩免费| 亚洲黄色一区| 黄色亚洲在线| 欧美日韩无遮挡| 久久精品道一区二区三区| 99视频精品免费观看| 狠狠入ady亚洲精品| 欧美不卡一区| 老鸭窝亚洲一区二区三区| 99精品国产在热久久下载| 欧美日韩免费精品| 欧美在线高清| 久久伊人亚洲| 麻豆av一区二区三区久久| 99精品久久| 99riav1国产精品视频| 亚洲成色www久久网站| 国产精品大片| 影音先锋久久精品| 永久域名在线精品| 亚洲手机在线| 亚洲日产国产精品| 日韩视频在线一区二区三区| 亚洲黄色av| 亚洲黄网站黄| 亚洲视频1区| 亚洲一区区二区| 欧美亚洲自偷自偷| 久久精品国产清高在天天线 | 亚洲欧洲日本国产| 91久久久久| 国产欧美大片| 免费不卡亚洲欧美| 欧美va天堂| 亚洲无玛一区| 国产精品久久久对白| 国产精品一国产精品k频道56| 国产精品视频免费一区| 老鸭窝毛片一区二区三区 | 国产精品夜夜夜一区二区三区尤| 国产欧美一区二区三区另类精品 | 男人天堂欧美日韩| 久久精品一区二区国产| 你懂的视频一区二区| 国产精品国产三级欧美二区| 最新国产乱人伦偷精品免费网站| 99在线热播精品免费99热| 国产日韩欧美一区在线| 女生裸体视频一区二区三区| 亚洲小说区图片区| 亚洲综合激情| 精品成人在线| 亚洲一区尤物| 国产在线日韩| 一区二区三区四区国产| 欧美黄色大片网站| 国产日韩精品久久| 欧美日韩在线一二三| 国产一区导航| 亚洲天堂成人| 久久综合久久综合这里只有精品| 91久久精品一区二区别| 久久青草久久| 在线综合欧美| 国产精品国产亚洲精品看不卡15 | 午夜综合激情| 在线成人h网| 久热re这里精品视频在线6| 亚洲久色影视| 黄色一区三区| 欧美久久综合| 久久久亚洲人| 久久国产精品久久精品国产| 亚洲精品黄色| 黄色另类av| 欧美日韩岛国| 欧美88av| 欧美在线视频二区| 校园激情久久| 国产一区二区黄色| 亚洲美女毛片| 亚洲国产激情| 精品福利电影| 伊人成人在线视频| 国产一区再线| 欧美三级不卡| 午夜精品久久| 欧美日韩一卡| 国产精品多人| 欧美日韩一区二区三区在线视频| 欧美永久精品| 久久久久久久久久久一区 | 亚洲小说区图片区| 国产综合激情| 欧美三级乱码| 精品9999| 99伊人成综合| 中文亚洲字幕| 国产精品夜夜夜| 欧美一级一区| 亚洲国产精品一区制服丝袜 | aa亚洲婷婷| 亚洲精品一级| 9国产精品视频| 亚洲一区二区三区四区中文| 亚洲一区三区电影在线观看| 亚洲免费中文| 久久久精品网| 国内揄拍国内精品久久| 国产精品国产亚洲精品看不卡15 | 亚洲二区在线| 亚洲黄色大片| 亚洲尤物在线| 午夜久久一区| 在线日韩av永久免费观看| 一区二区三区精品国产| 免费在线成人av| 亚洲欧美文学| 亚洲丰满在线| 乱码第一页成人| 国产一区再线| 国产精品区免费视频| 欧美一区二区| 亚洲看片一区| 久久久久国产精品午夜一区| 欧美午夜视频在线| 99av国产精品欲麻豆| 亚洲一区二区三区色| 欧美日韩精品不卡| 国产欧美韩日| 国内精品久久久久久久果冻传媒| 亚洲欧洲日韩综合二区| 美女诱惑一区| 亚洲三级色网| 国产在线欧美日韩| 亚洲一区二区毛片| 一区在线免费| 欧美阿v一级看视频| 99日韩精品| 午夜精品影院| 久久国产直播| 99国产一区| 国内一区二区三区| 久久久久久九九九九| 亚洲精品一区二区三区樱花| 欧美精品一区在线| 亚洲在线一区| 国产精品社区| 国产亚洲综合精品| 99精品国产福利在线观看免费| 欧美激情1区| 久久久精品国产一区二区三区| 亚洲精选在线| 亚洲高清激情| 在线欧美一区| 亚洲国产精品123| 国语自产精品视频在线看8查询8| 亚洲欧美日韩专区| 国产午夜精品一区二区三区欧美| 国产精品mm| 欧美私人啪啪vps| 欧美日韩国产色综合一二三四| 翔田千里一区二区| 亚洲欧美日本日韩| 国产精品午夜av在线| 国产欧美日韩综合一区在线播放| 亚洲国内欧美| 亚洲美女黄网| 国产日本精品| 亚洲综合电影一区二区三区| 国产精品尤物| 久久精品91| 欧美精品aa| 欧美日韩一区二区三| 欧美日韩精品不卡| 亚洲视屏一区| 亚洲毛片一区| 久久av二区| 欧美日韩国产三区| 国产精品yjizz| 亚洲成色精品| 国产农村妇女精品一二区| 国产精品资源| 久久综合伊人77777麻豆| 午夜日本精品| 91久久精品www人人做人人爽| 宅男噜噜噜66国产日韩在线观看| 国产伦精品一区二区三区四区免费| 亚洲一区二区三区色| 欧美黄污视频| 99在线|亚洲一区二区| 国产亚洲永久域名| 女人天堂亚洲aⅴ在线观看| 国产精品国产三级欧美二区| 99xxxx成人网| 欧美国产另类| 国产日韩欧美精品| 亚洲欧美文学| 在线视频精品| 欧美激情成人在线| 一级成人国产| 欧美三区不卡| 亚洲欧美日韩专区| 一区二区三区我不卡| 欧美亚洲免费高清在线观看| 黄色成人在线网址| 美女诱惑黄网站一区| 精品不卡视频| 欧美va亚洲va日韩∨a综合色| 日韩午夜av在线| 欧美日韩免费高清| 亚洲专区免费| 亚洲国产一区在线| 久久一区中文字幕| 一区二区三区高清视频在线观看| 欧美激情国产日韩| 国产欧美短视频| 亚洲第一毛片| 欧美日韩一区二区三区在线观看免 | 欧美激情综合| 一本色道久久综合亚洲精品不卡 | 伊人久久大香线蕉综合热线| 国产精品手机视频| 国产自产在线视频一区| 性一交一乱一区二区洋洋av| 亚洲大黄网站| 欧美日韩网站| 久久久www| 亚洲欧美日韩精品久久久 | 久久国产日本精品| 亚洲欧洲精品一区| 欧美日韩亚洲一区二区三区在线| 亚洲一区亚洲| 国产日韩一区二区| 精品96久久久久久中文字幕无| 欧美激情亚洲| 欧美日韩hd| 老牛国产精品一区的观看方式| 夜夜嗨av一区二区三区网站四季av| 欧美视频久久| 欧美日韩精品综合| 欧美日韩精品免费看| 欧美成人一区二免费视频软件| 久久av二区| 欧美中日韩免费视频| 国产精品手机在线| 午夜综合激情| 久久久久久穴| 欧美日本在线| 一区在线视频| 亚洲久久在线| 国产日韩欧美三区| 翔田千里一区二区| 久久国产一区二区| 久久精品女人的天堂av| 美日韩免费视频| 欧美大片专区| 精品1区2区3区4区| 一本色道久久综合| 亚洲在线国产日韩欧美| 久久一区欧美| 韩日午夜在线资源一区二区| 亚洲国产高清视频| 国产精品主播| 欧美精品自拍| 亚洲欧洲日本国产| 久久本道综合色狠狠五月| 女人天堂亚洲aⅴ在线观看| 黄色亚洲免费| 午夜一区不卡| 极品日韩久久| 亚洲综合三区| 亚洲私拍自拍| 鲁大师成人一区二区三区| 欧美午夜精品| 亚洲欧美日本日韩| 欧美特黄一区| 国产女主播一区二区| 欧美区国产区| 亚洲尤物影院| 亚洲国产欧美国产综合一区| 国产精品美女| 亚洲无线视频| 欧美一区综合| 国产日韩欧美一区二区三区在线观看 | 久久国产主播精品| 国产精品vip| 亚洲欧美视频一区二区三区| 狠狠综合久久| 欧美一区不卡| 亚洲一区二区四区| 亚洲黄色毛片| 欧美久久久久久久| 亚洲一区二区三区免费在线观看| 欧美午夜不卡影院在线观看完整版免费| 国产欧美日韩综合一区在线观看 | 亚洲免费久久| 欧美在线3区| 国产精品久久777777毛茸茸| 国产精品porn| 欧美日韩1区2区3区| 久久国产精品久久w女人spa| 亚洲美女啪啪| 亚洲国产日韩欧美一区二区三区| 欧美fxxxxxx另类| 免费看亚洲片| 国产精品久久一区二区三区| 亚洲黄色毛片| 亚洲激情黄色| 国外成人免费视频| 老司机精品视频网站| 亚洲欧美日本日韩| 国产婷婷精品| 国产欧美日韩在线播放| 亚洲第一伊人| 亚洲国产精品一区制服丝袜 | 亚洲午夜伦理| 欧美色一级片| 国内在线观看一区二区三区| 欧美日韩亚洲免费| 国产一区日韩欧美| 黄色亚洲在线| 亚洲三级视频| 99国产精品久久久久老师 | 国产主播一区| 合欧美一区二区三区| 欧美三级乱码| 亚洲成人在线| 国产三区精品| 另类国产ts人妖高潮视频| 久久久夜精品| 国产一在线精品一区在线观看| 狠狠干综合网| 一区二区三区四区五区精品| 亚洲中午字幕| 久久字幕精品一区| 国产精品sss| 99精品福利视频| 麻豆亚洲精品| 国产综合久久| 国产欧美亚洲一区| 久久一区亚洲| 亚洲欧洲日本国产| 国产精品一区二区三区观看| 久久精选视频| 国产综合亚洲精品一区二| 日韩亚洲视频在线| 久久国产66| 亚洲成人在线视频网站| 亚洲欧美精品| 亚洲午夜在线| 免费欧美日韩| 亚洲亚洲精品三区日韩精品在线视频| 99精品欧美| 欧美人与禽猛交乱配视频| 亚洲精品婷婷| 午夜精品久久| 国产精品日韩欧美一区二区三区| 老牛嫩草一区二区三区日本| 亚洲高清视频一区二区| 久久精品免费| 中国女人久久久| 欧美午夜精品久久久久免费视| 国产精品视区| 亚洲福利精品| 欧美日韩精品免费观看| 亚洲一区一卡| 日韩网站在线| 一区免费在线| 欧美~级网站不卡| 亚洲一区黄色| 亚洲精品九九| 一区在线免费观看| 欧美另类综合| 久久综合伊人| 麻豆9191精品国产| 国产一区二区精品| 日韩天堂av| 亚洲高清视频在线观看| 欧美日韩一区二区三区在线观看免| 欧美主播一区二区三区美女 久久精品人|