《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 其他 > 設(shè)計(jì)應(yīng)用 > 基于邊緣計(jì)算的局部放電模式識(shí)別
基于邊緣計(jì)算的局部放電模式識(shí)別
2022年電子技術(shù)應(yīng)用第9期
宋佳駿,劉守豹,熊中浩
大唐水電科學(xué)技術(shù)研究院有限公司,四川 成都610074
摘要: 局部放電是設(shè)備處于高電場(chǎng)強(qiáng)下,由于電場(chǎng)分布不均而導(dǎo)致的絕緣介質(zhì)放電現(xiàn)象,設(shè)備產(chǎn)生局部放電對(duì)于絕緣層的危害很大,迅速檢測(cè)識(shí)別設(shè)備的放電類(lèi)型是工業(yè)正常運(yùn)作的保障。針對(duì)電氣設(shè)備局部放電類(lèi)型識(shí)別問(wèn)題,考慮到電氣設(shè)備監(jiān)測(cè)系統(tǒng)在診斷識(shí)別方面的時(shí)效性及精度,提出了基于邊緣計(jì)算的局部放電模式識(shí)別方法,利用邊緣計(jì)算架構(gòu)的優(yōu)勢(shì),基于云層訓(xùn)練、邊緣推理思路,將復(fù)雜的識(shí)別算法訓(xùn)練優(yōu)化過(guò)程部署在云層,將計(jì)算量大的識(shí)別算法卸載到邊緣層,而計(jì)算量小的特征提取保留在終端設(shè)備層處理。通過(guò)構(gòu)造局部放電相位分布譜圖提取局部放電的統(tǒng)計(jì)特征參數(shù),采用粒子群優(yōu)化算法對(duì)廣義回歸神經(jīng)網(wǎng)絡(luò)模型進(jìn)行優(yōu)化,最后將統(tǒng)計(jì)特征參數(shù)作為神經(jīng)網(wǎng)絡(luò)的輸入量,對(duì)放電類(lèi)型進(jìn)行識(shí)別。結(jié)果表明,所提模式識(shí)別方法識(shí)別準(zhǔn)確率高,識(shí)別效率高。
中圖分類(lèi)號(hào): TN91;TM85
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.222525
中文引用格式: 宋佳駿,劉守豹,熊中浩. 基于邊緣計(jì)算的局部放電模式識(shí)別[J].電子技術(shù)應(yīng)用,2022,48(9):55-58,62.
英文引用格式: Song Jiajun,Liu Shoubao,Xiong Zhonghao. Partial discharge pattern recognition based on edge computing[J]. Application of Electronic Technique,2022,48(9):55-58,62.
Partial discharge pattern recognition based on edge computing
Song Jiajun,Liu Shoubao,Xiong Zhonghao
Datang Hydropower Science & Technology Research Institute Co.,Ltd.,Chengdu 610074,China
Abstract: Partial discharge is the phenomenon of dielectric discharge caused by uneven distribution of electric field under high electric field intensity. Partial discharge of equipment does great harm to the insulation layer. Rapid detection and identification of the discharge type of equipment is the guarantee of normal industrial operation. For electrical equipment for partial discharge type recognition problem, considering the electrical equipment monitoring system in the diagnosis of the timeliness and accuracy of recognition, this paper puts forward the partial discharge pattern recognition method based on edge calculation, using the advantage of edge computing architectures, edge of reasoning based on training, the clouds, the complex recognition algorithm training optimization deployment in the clouds. The recognition algorithm with large computation is offloaded to the edge layer, while the feature extraction with small computation is reserved to the terminal device layer. The statistical characteristic parameters of pd were extracted by constructing pd phase distribution spectrum, and the generalized regression neural network model was optimized by particle swarm optimization algorithm. Finally, the statistical characteristic parameters were used as the input of the neural network to identify the discharge types. The results show that the proposed pattern recognition method has high recognition accuracy and efficiency.
Key words : edge computing;partial discharge;pattern recognition;generalized regression neural network

0 引言

    電廠(chǎng)中高壓電氣設(shè)備在長(zhǎng)期運(yùn)行的情況下不可避免會(huì)出現(xiàn)各種各樣的劣化或者故障,對(duì)高壓電氣設(shè)備的實(shí)時(shí)監(jiān)測(cè)和故障預(yù)警不僅能保證設(shè)備的穩(wěn)定運(yùn)行,也能極大程度上提高供電可靠性[1]。隨著信息技術(shù)的發(fā)展,采用數(shù)字信號(hào)處理局部放電信號(hào)的技術(shù)愈發(fā)成熟,目前針對(duì)局部放電類(lèi)型識(shí)別研究主要目的是提高缺陷識(shí)別精度,復(fù)雜的神經(jīng)網(wǎng)絡(luò)會(huì)占用大量計(jì)算資源,不符合工業(yè)運(yùn)作的實(shí)際需求響應(yīng)。在實(shí)際的監(jiān)測(cè)系統(tǒng)中,必須考慮計(jì)算機(jī)軟硬件資源環(huán)境的復(fù)雜程度以及識(shí)別算法的時(shí)延特性等問(wèn)題[2-3]

    在萬(wàn)物互聯(lián)的大背景下,傳統(tǒng)云計(jì)算處理海量數(shù)據(jù)的能力顯得尤為不足,存在實(shí)時(shí)性不夠、帶寬不足、能耗較大以及數(shù)據(jù)安全性低等問(wèn)題[4-5]。邊緣計(jì)算的出現(xiàn)使得上述問(wèn)題得到有效的解決,針對(duì)局部放電數(shù)據(jù)采樣頻率高、數(shù)據(jù)處理復(fù)雜等特點(diǎn),本文提出了一種基于邊緣計(jì)算的局部放電模式識(shí)別方法,該方法將模式識(shí)別算法合理分配在邊緣計(jì)算框架中,有效地降低了云端計(jì)算壓力,在保證識(shí)別準(zhǔn)確性的情況下提高了數(shù)據(jù)處理的實(shí)時(shí)性。




本文詳細(xì)內(nèi)容請(qǐng)下載:http://www.xxav2194.com/resource/share/2000004921。




作者信息:

宋佳駿,劉守豹,熊中浩

(大唐水電科學(xué)技術(shù)研究院有限公司,四川 成都610074)



wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 波多野结衣在线观看一区二区三区| free性欧美另类高清| 日韩人妻潮喷中文在线视频| 人人爽天天爽夜夜爽曰| 试看120秒做受小视频免费| 国产色无码精品视频免费| 久久99热精品免费观看动漫| 欧美成人怡红院在线观看| 免费网站看v片在线香蕉| 韩国演艺圈悲惨133bd| 国产精品黄大片观看| 一区二区三区视频在线| 日本电影一区二区| 亚洲日韩乱码中文字幕| 精品一卡2卡三卡4卡免费网站| 国产又黄又大又粗的视频| 67194在线午夜亚洲| 妞干网免费视频| 久久久久夜夜夜精品国产| 欧美在线视频导航| 人妻系列无码专区久久五月天| 亚洲小视频在线播放| 五月婷婷婷婷婷| 中文视频在线观看| freesexvideos糟蹋hd| 日批视频在线看| 精品精品国产高清a毛片| 欧美群交在线播放1| 无码熟妇αⅴ人妻又粗又大| 在线成人综合色一区| 国产三级电影网站| 公交车被CAO得合不拢腿视频| 免费在线视频a| 91啦中文成人| 妞干网在线观看| 丰满岳乱妇在线观看中字无码| 曰批免费视频播放免费| 亚洲国产高清人在线| 热99re久久精品2久久久| 午夜小视频免费观看| 蜜柚直播在线第一页|