《電子技術應用》
您所在的位置:首頁 > 人工智能 > 設計應用 > 計及可再生能源接入配電網的負荷預測和優化
計及可再生能源接入配電網的負荷預測和優化
電子技術應用
翟哲1,余杰文2,杜洋3,曹澤江4
1.中國南方電網電力調度控制中心;2.南方電網人工智能科技有限公司; 3.深圳市法本信息技術股份有限公司;4.南方電網數字電網科技(廣東)有限公司
摘要: 目前,可再生能源大量接入配電網,但是太陽能、風能、光伏及風電等可再生能源的間歇性和隨機性不可避免地會造成配電網的波動。考慮電網內可再生能源發電功率與用電負荷隨時間變化的特點,提出一種基于小波變換和神經網絡的可再生能源接入配電網的負荷預測和優化方法。首先采集配電網的發電與負荷數據,利用小波變換處理收集到的數據,得到局部尺度和頻率分解的特征參數,建立神經網絡預測模型;然后,對經過小波變換后得到的特征參數進行訓練,根據預測負荷對可再生能源的發電量進行調節,保持配電網供需側的動態平衡。結果表明,所提方法能夠對負荷進行有效預測,通過提前預測負荷量,保證配電網用電穩定性的同時,最大化利用可再生能源。
中圖分類號:TM93 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.245284
中文引用格式: 翟哲,余杰文,杜洋,等. 計及可再生能源接入配電網的負荷預測和優化[J]. 電子技術應用,2024,50(11):35-41.
英文引用格式: Zhai Zhe,Yu Jiewen,Du Yang,et al. Load prediction and optimization of renewable energy access to the distribution network[J]. Application of Electronic Technique,2024,50(11):35-41.
Load prediction and optimization of renewable energy access to the distribution network
Zhai Zhe1,Yu Jiewen2,Du Yang3,Cao Zejiang4
1.Dispatching and Control Center, China Southern Power Grid; 2.China Southern Power Grid Artificial Intelligence Technology Co., Ltd.; 3.Shenzhen Faben Information Technology Co., Ltd.; 4.China Southern Power Grid Digital Power Grid Technology (Guangdong) Co., Ltd.
Abstract: Currently, with the large-scale integration of renewable energy into the distribution network, the intermittency and randomness of renewable energy sources such as solar and wind power inevitably cause fluctuations in the distribution network. Considering the characteristics of renewable energy generation power and electricity load in the power grid over time, a load prediction and optimization method based on wavelet transform and neural network for renewable energy access to the distribution network is proposed. Firstly, the grid operation data are collected, and the wavelet transform is used to process the collected data to obtain the feature parameters of local scale and frequency decomposition. A neural network is established. Then the feature parameters obtained after the wavelet transform are trained to obtain a model capable of predicting the load, according to which the power generation of renewable energy sources can be adjusted in time to maintain the dynamic balance between the supply and demand sides of the distribution network. The results show that the proposed method can effectively predict the load and regulate the power generation by observing the load in advance to ensure the stability of power consumption in the distribution network and simultaneously maximize the use of renewable energy.
Key words : cloud technology;neural network;wavelet transform;wind and solar power generation;load prediction;power generation optimization

引言

近年來,可再生能源發電設備裝機容量持續增長,極大地提升了配電網滿足更多用電負荷的能力[1]。但是風光發電出力波動性大,對電力系統的運行方式、潮流方向及電網運行態勢造成了很大的影響,提升了調度難度[2-3]。目前,解決可再生能源波動性對電網用電穩定性的影響的需求不斷增強。在此背景下,張耀聰[4]利用LSTM、注意力機制的神經網絡對風力、太陽能等可再生能源的出力進行預測以優化電網調度方式;葉梁勁等人[5]利用小波變換對電力負荷相關數據(天氣、日期等)進行特征提取,使用LSTM長短期記憶神經網絡對特征提取后的數據進行訓練,以實現對電力系統的負荷預測,得到了較高精度的預測模型;楊麗薇等人[6]采用小波分解與BP神經網絡的組合算法,預測相同天氣類型下的光伏電站短期功率輸出,實現了對晴天與多云天氣下的光伏功率輸出預測。預測態勢感知技術也逐漸被用于優化配電網的運行過程[7-9]。

雖然不少研究學者針對電力負荷預測做出了研究并得到了一定研究成果,但目前的研究缺乏一套可以執行的系統,并且研究對象(數據集的參量)較為單一。綜上所述,針對現有研究難以解決風光發電波動大、負荷大小難以預測對電網運行態勢造成重大影響以及調度困難的問題,本文通過構建配電網態勢感知框架,提出了一種基于小波變換和神經網絡的可再生能源接入配電網的負荷預測和優化方法。首先,采集電網運行數據,利用小波變換處理收集到的數據,得到局部尺度和頻率分解的特征參數;然后建立神經網絡,對經過小波變換后得到的特征參數進行訓練,得到能夠預測負荷的模型,通過預測負荷并結合實時用電需求進行合理的調度,實現發電設備與用電設備的之間的平衡,提高配電網的穩定性;最后運用至實例中表明,本文方法能夠在保證最大化利用綠色可再生能源的同時,維持用戶側的用電穩定,提升含有可再生能源的配電網可靠性。


本文詳細內容請下載:

http://www.xxav2194.com/resource/share/2000006207


作者信息:

翟哲1,余杰文2,杜洋3,曹澤江4

(1.中國南方電網電力調度控制中心,廣東 廣州 510000;

2.南方電網人工智能科技有限公司,廣東 廣州 510000;

3.深圳市法本信息技術股份有限公司,廣東 廣州 510000;

4.南方電網數字電網科技(廣東)有限公司,廣東 廣州 510000)


Magazine.Subscription.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 日本视频网站在线www色| 精品国产v无码大片在线看| 国色天香中文字幕视频| 久久国产精品久久国产精品| 熟妇激情内射com| 国产人久久人人人人爽| 2020因为爱你带字幕免费观看全集| 忘忧草视频www| 久久精品国产9久久综合| 欧美黄色第一页| 午夜dj在线观看免费高清在线| 黄页在线播放网址| 国产老师的丝袜在线看| …久久精品99久久香蕉国产| 日本人护士免费xxxx视频| 亚洲国产成人久久| 猴哥影院在线播放视频| 四虎AV永久在线精品免费观看| 国产精品真实对白精彩久久| 国内精品视频在线观看| 一本之道无吗一二三区| 日本免费中文字幕在线看| 亚洲中久无码永久在线观看同| 狠狠色婷婷久久一区二区三区 | 一本色道久久综合网| 日韩欧美一区二区三区在线播放| 亚洲日韩欧洲无码av夜夜摸| 男人的天堂欧美| 台湾swag视频在线观看| 韩国日本好看电影免费看| 国产精品一区二区久久乐下载| 99爱在线精品免费观看| 少妇BBB好爽| 中文字幕理论电影理论片| 日韩国产欧美精品综合二区| 亚洲国产成人片在线观看| 波多野结衣妻奴| 免费A级毛片无码免费视频| 精品无码综合一区二区三区| 国产一级视频在线观看网站| 麻豆国产高清精品国在线|