《電子技術應用》
您所在的位置:首頁 > 人工智能 > 設計應用 > 基于深度學習的電廠跑冒滴漏視頻識別應用研究
基于深度學習的電廠跑冒滴漏視頻識別應用研究
電子技術應用
張原1,司源2
1.國能信控技術股份有限公司;2.中國電子信息產業集團有限公司
摘要: 為解決火電廠設備在運行過程中會存在“跑冒滴漏”現象,通過視覺識別技術及深度學習的應用,提出基于卷積神經網絡模型的電廠跑冒滴漏視頻識別模型,并對模型進行優化和改進。該方法基于火電廠攝像頭進行現場圖像的采集,進行數據預處理和優化,同時按照缺陷形態建立對應數據集。然后,通過語義分割、數據增強、注意力機制、更改激活函數等技術與卷積神經網絡結合,對YOLOv5算法進行深層次優化,包括訓練策略的改進和模型評價調整,增強了模型算法對復雜場景識別理解能力,可有效提高視頻識別精度與速度,有助于提高火電廠巡檢的自動化、智能化水平,具有較好的工程應用前景。
中圖分類號:TP29 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.245845
中文引用格式: 張原,司源. 基于深度學習的電廠跑冒滴漏視頻識別應用研究[J]. 電子技術應用,2025,51(2):21-28.
英文引用格式: Zhang Yuan,Si Yuan. Research on the application of deep learning based video recognition for power plant leakage and dripping[J]. Application of Electronic Technique,2025,51(2):21-28.
Research on the application of deep learning based video recognition for power plant leakage and dripping
Zhang Yuan1,Si Yuan2
1.CHN Energy I&C Interconnection Technology Co., Ltd.; 2.China Electronics Corporation Limited
Abstract: To solve the problem of “leakage and dripping” during the operation of thermal power plant equipment, a video recognition model for power plant leakage based on convolutional neural network model is proposed through the application of visual recognition technology and deep learning, and the model is optimized and improved. Cameras in thermal power plants are utilized to collect on-site images, then data preprocessing and optimization is performed, and corresponding datasets are established based on defect morphology. Then, by combining semantic segmentation, data augmentation, attention mechanisms, and changing activation functions with convolutional neural networks, the YOLOv5 algorithm is deeply optimized, including improvements in training strategies and model evaluation adjustments. This enhances the model algorithm’s ability to recognize and understand complex scenes, effectively improving video recognition accuracy and speed, and helping to improve the automation and intelligence level of thermal power plant inspections. It has good engineering application prospects.
Key words : deep learning;power plant;leakage and dripping;video recognition

引言

電廠運行現場存在多種管道和設備,其中存在煤炭的輸送和燃燒、熱能的轉換、機械能的產生以及電能的生成等環節,這些環節的安全運行對于火電廠整體安全和效率至關重要。而電廠的“跑冒滴漏”現象就存在于這些重要的管道和設備上,為保證設備安全穩定,目前電廠通常采用巡點檢形式進行設備的定期檢查來消除這些隱患。但漏氣、漏液等微小隱患往往不易察覺,增大了安全運行風險[1]。

近年來,深度學習、計算機視覺技術已在電力自動化、故障診斷、安防管控等各細分領域逐步開始應用[2]。其中針對于火電廠現場“跑冒滴漏”現象的自學習與自診斷也有了深入的研究。快速基于區域的卷積神經網絡(Faster Region-based Convolutional Network,Faster R-CNN)、基于區域的全卷積網絡(Region-based Fully Convolutional Network,R-FCN)、單次多邊框檢測(Single Shot MultiBox Detector,SSD)、YOLO(You Only Look Once)等算法與傳統目標識別算法相比[3],具有從大量圖像數據中自動學習目標特征、不用設計特征提取器等優勢,這種基于深度卷積神經網絡的目標識別算法有效地簡化了算法流程,提升了目標識別的效率、準確率以及泛化能力[4]。

目前已有電廠開展了多種無人檢測研究,實現了設備跑冒滴漏現象識別并及時向運行人員發送警報。攝像頭監控、視頻圖像識別、機器人巡檢、無人機巡檢、紅外測溫等技術手段的應用,極大地減輕了現場巡檢人員工作[5]。但這些研究往往基于原有的算法和數據庫,對于現場環境復雜、泄漏情況多樣的現象識別率不高,會出現漏檢或錯檢情況,給電廠安全運行帶來了隱患。

本文通過視覺識別技術及深度學習的應用,針對火電廠運行現場漏油、漏水、漏灰、漏煤、漏粉、漏氣、漏煙等情況[6],提出一種基于深度學習的視頻實時異常檢測方法。該方法采用目標檢測性能較為成熟的YOLOv5為網絡結構基礎[7],構建電廠設備跑冒滴漏數據集,對原始算法進行改進,包含了引入注意力機制、激活函數的更改、模型訓練以及建立評價。通過搭建訓練平臺進行迭代學習,不斷構建和修正圖像模型,并將模型存儲在統一數據平臺中,最終實現了檢測模型的端到端的學習策略。為了驗證對原始算法改進后的效果,將改進后的模型在數據集上進行訓練并驗證,通過目標檢測和評價指標對結果進行分析,反饋模型應用效果,最終完成測試驗證。


本文詳細內容請下載:

http://www.xxav2194.com/resource/share/2000006320


作者信息:

張原1,司源2

(1.國能信控技術股份有限公司,北京 100097;

2.中國電子信息產業集團有限公司,廣東 深圳 518057)


Magazine.Subscription.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 中国精品白嫩bbwbbw| 久久99国产精品久久99小说 | 青青青国产成人久久111网站 | 小莹与翁回乡下欢爱姿势| 乱人伦中文字幕电影| 理论片2023最新在线观看| 国产午夜激无码av毛片| 8050午夜网| 好男人在线社区www在线视频免费| 久久国产加勒比精品无码| 欧美日韩精品一区二区三区高清视频| 午夜福利一区二区三区在线观看| 国产三级精品三级在专区中文| 国精产品一区一区三区有限公司| 中文字幕亚洲综合久久| 日韩精品极品视频在线观看免费| 亚洲欧美日韩网站| 真实乱l仑全部视频| 国产a免费观看| 成人三级精品视频在线观看| 国产资源中文字幕| taoju.tv| 成人艳情一二三区| 久久大香线蕉综合爱| 欧美乱人伦人妻中文字幕| 亚洲色一区二区三区四区| 色妞www精品视频观看软件| 国产成人精品无码一区二区| 24小时免费看片| 天天做天天爱天天干| 中文字幕一区在线观看| 日韩一级在线观看| 亚洲乱码一区二区三区在线观看| 永久免费毛片在线播放| 免费看毛片电影| 美女被免费网在线观看网站| 国产又大又长又粗又硬的免费视频| 俄罗斯精品bbw| 国内免费在线视频| av无码精品一区二区三区四区| 成年人影院在线观看|