《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 基于差分隱私的面部圖像安全傳播方法研究
基于差分隱私的面部圖像安全傳播方法研究
網絡安全與數據治理
賀春祿1,唐琪2
1.中國科學院文獻情報中心;2.湖南大學
摘要: 人臉數據蘊含豐富身份信息,其隱私泄露問題備受關注。傳統差分隱私方法直接對像素或特征向量整體添加噪聲,導致識別性能下降且缺乏可解釋性。為此,提出一種新型差分隱私方法,將特征嵌入向量結合分類方法設計,創新性地將響應數據轉換為徑向半徑與切向角度兩種形式,更好適配分類中的角度與距離度量。在此基礎上,構建了基于角度與半徑的差分隱私噪聲生成機制,并通過差分隱私組合定理定義隱私預算并進行數學證明。此外,設計了隱私圖像生成方法,通過優化評價函數實現隱私性與可用性的平衡。實驗結果基于三個公開數據集,表明所提方法在徑向與切向方向的組合應用中表現優異,在相同隱私預算下顯著提升了識別性能。該方法實現了隱私保護與分類可用性的兼顧,并在解釋性與性能上展現出顯著優勢。
中圖分類號:TP309文獻標識碼:ADOI:10.19358/j.issn.2097-1788.2025.03.002
引用格式:賀春祿,唐琪. 基于差分隱私的面部圖像安全傳播方法研究[J].網絡安全與數據治理,2025,44(3):8-16.
Research on security dissemination method of facial images based on differential privacy
He Chunlu1,Tang Qi2
1. National Science Library, Chinese Academy of Sciences; 2. Hunan University
Abstract: Face data contains rich identity information, and its privacy leakage has attracted much attention. Traditional differential privacy methods directly add noise to pixels or feature vectors as a whole, resulting in decreased recognition performance and lack of interpretability. Therefore, this paper proposes a new differential privacy method, which combines the feature embedding vector with the classification method design, and innovatively converts the response data into two forms of radial radius and tangential angle, so as to better adapt the angle and distance measurement in classification. On this basis, a differential privacy noise generation mechanism based on angle and radius is constructed, and the privacy budget is defined and mathematically proved by the differential privacy combination theorem. In addition, this paper designs a privacy image generation method to achieve a balance between privacy and availability by optimizing the evaluation function. The experimental results based on three public datasets show that the proposed method performs well in the combined application of radial and tangential directions, and significantly improves the recognition performance under the same privacy budget. This method achieves both privacy protection and classification availability, and shows significant advantages in interpretability and performance.
Key words : differential privacy; face recognition; feature embedding; privacy-preserve

引言

人臉數據包含獨特的身份信息,如瞳距、輪廓和尺寸等生物特征,機器學習技術能夠通過訓練人臉圖像實現精準識別。然而,若人臉數據泄露,不法分子可能重構面部圖像、生成虛擬視頻或規避活體檢測,導致嚴重的隱私風險和經濟損失。隨著人臉識別技術的發展,隱私保護問題日益受到重視。2023年8月,國家網信辦發布《人臉識別技術應用安全管理規定(試行)(征求意見稿)》[1],對人臉識別的應用場景提出具體要求,尤其是針對遠距離、無感式識別技術設定了明確界限。在政策監管加強的背景下,技術層面的隱私保護研究逐漸受到關注。為了有效應對個人信息泄露和數據濫用的風險,不同學者從多元化的角度提出了創新的理論框架與技術手段,包括差分隱私[2-4]、聯邦學習[5]、同態加密[6]、安全多方計算[7]等。這些方法在保障數據隱私的同時,推動了數據共享與協作的實踐進步。其中,差分隱私作為一項重要的隱私保護技術,在防御推理攻擊和模型提取攻擊方面展現了顯著的潛力。然而,在面部圖像保護領域,其應用仍面臨諸多挑戰。現有方法在隱私性與可用性之間難以有效平衡,主要包括像素處理方法和特征向量處理方法的局限性。

本文基于差分隱私機制,提出一種契合圖像識別特點的隱私保護方法,主要貢獻包括:(1)提出基于徑向距離與切向方向的差分隱私方法,并設計噪聲生成機制以適配角度度量和歐式距離度量的分類需求;(2)提出隱私圖像生成方法,通過簡單的圖像遮罩操作,將特征嵌入向量轉化為滿足差分隱私的特征表示;(3)構建隱私預算的度量方法,結合數學證明驗證算法的隱私性及有效性,并在公開數據集上進行實驗驗證。

 

本文詳細內容請下載:

http://www.xxav2194.com/resource/share/2000006371


作者信息:

賀春祿1,唐琪2

(1.中國科學院文獻情報中心,北京100190;

2.湖南大學,湖南長沙410082)


Magazine.Subscription.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 丝袜高跟美脚国产1区| 亚洲综合五月天欧美| www.五月婷| 妇女bbbb插插插视频| 久久精品成人一区二区三区| 滴着奶水做着爱中文字幕| 国产一级强片在线观看| 2019国产情侣| 成人国产一区二区三区精品| 五月激情丁香网| 波多野结衣看片| 又黄又大又爽免费视频| 黑人巨茎大战白人美女| 国产黄在线观看免费观看不卡| 中文字幕免费在线观看 | 秋霞免费一级毛片| 国产免费AV片在线观看播放| 18成人片黄网站www| 女人18毛片水最多| 久久96国产精品久久久| 校草被c呻吟双腿打开bl双性| 亚洲精品国产精品国自产网站| 精品视频一区二区三区在线观看 | 狠狠做深爱婷婷综合一区| 国产一区美女视频| 四虎国产精品永久在线看| 在线视频中文字幕| 两个人看www免费视频| 日韩一区精品视频一区二区| 亚洲成av人片在线观看www| 男插女高潮一区二区| 国产a级特黄的片子视频免费| 欧洲97色综合成人网| 国产高清视频在线免费观看 | 色综七七久久成人影| 国产精品99久久精品爆乳| 99久久99久久免费精品小说| 尤物视频193.com| 丰满岳乱妇在线观看中字无码| 最近中文字幕大全免费版在线| 国产高清在线精品一区二区三区|