《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 設計應用 > 基于機器閱讀理解的電力安全命名實體識別方法
基于機器閱讀理解的電力安全命名實體識別方法
電子技術應用
葛朔1,鄒華1,潘明明2,王白根3
1.北京郵電大學 計算機學院(國家示范性軟件學院);2.中國電力科學研究院有限公司; 3.國網安徽省電力有限公司安慶供電公司
摘要: 為解決現有命名實體識別方法在電力安全規程等領域文本中識別效果不佳的問題,提出了一種基于機器閱讀理解的電力安全命名實體識別方法。首先,使用預訓練模型對待識別文本進行編碼處理得到文本向量表示。其次,利用層次化注意力機制捕捉嵌套實體間的層次關系,重新分配文本序列的注意力權重;在此基礎上,利用分類器預測文本中實體范圍,得到最終實體識別結果。將該方法在ACE 2005與OntoNotes 4.0公開數據集上進行驗證,對比主流方法其取得最優的識別效果,在電力安全領域實體識別場景下,該方法可達到89.3%的識別準確率,實現電力安全領域命名實體的精準識別。
中圖分類號:TP391.1 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.256517
中文引用格式: 葛朔,鄒華,潘明明,等. 基于機器閱讀理解的電力安全命名實體識別方法[J]. 電子技術應用,2025,51(6):21-26.
英文引用格式: Ge Shuo,Zou Hua,Pan Mingming,et al. Named entity recognition method for power safety based on machine reading comprehension[J]. Application of Electronic Technique,2025,51(6):21-26.
Named entity recognition method for power safety based on machine reading comprehension
Ge Shuo1,Zou Hua1,Pan Mingming2,Wang Baigen3
1.School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications;2.China Electric Power Research Institute; 3.Anqing Power Supply Company of State Grid Anhui Electric Power Co., Ltd.
Abstract: To address the issue of poor recognition performance of existing named entity recognition methods in texts from fields such as electric power safety regulations, this paper introduces a method for named entity recognition in power safety based on machine reading comprehension. Firstly, a pre-trained model is used to encode the text to be recognized to obtain the vector representation of the text. Secondly, a hierarchical attention mechanism is utilized to capture the hierarchical relationships among nested entities and re-allocate the attention weights of the text sequence. On this basis, a classifier is employed to predict the entity scope in the text, and the final entity recognition results are obtained. The method is validated on the ACE 2005 and OntoNotes 4.0 public datasets, achieving optimal recognition performance compared to mainstream approaches. In the context of entity recognition for power safety scenarios, the method attains an accuracy rate of 89.3%, enabling precise identification of named entities in the power safety domain.
Key words : power safety;named entity recognition;machine reading comprehension;attention mechanism

引言

電力行業是整個國家的能源支撐[1],而電力安全檢查既是減少生產安全事故、保障生命財產安全的重要環節,也是國家電網公司人力成本重要支出環節。當前電力安全檢查領域知識以非結構化文檔形式存在,亟需建立統一的電力安全領域知識體系,而知識圖譜為構建知識體系的最佳手段[2]。因此,通過研究針對電力安全領域實體的命名實體識別方法,準確識別電力安全領域實體,并在此基礎上構建領域知識圖譜,對提升電力系統智能化自動化水平具有積極的意義。

當前許多學者對電力領域命名實體識別做了大量的研究,主要分為基于規則和字典的方法、基于統計機器學習的方法及基于深度學習的方法。曹靖等[3]與劉梓權等[4]通過構建電力領域專業詞典,將完成分詞的語料在詞庫中進行匹配以完成命名實體識別工作。然而,基于規則與詞典方法依賴于行業專家知識、可遷移性較差且需要不斷進行維護。邵詩韻等[5]利用條件隨機場模型完成電力工程標書中文本實體的識別,實現對關鍵內容的自動抽取;楊維等[6]采用條件隨機場模型從預料中識別出電力標準內容關聯的實體名。然而,基于統計學習的方法存在時間復雜度較高、難以對大規模樣本訓練的問題。馮斌等[7]將注意力機制結合雙向長短期網絡模型實現電力設備缺陷關鍵類型實體的提?。皇Y晨等[8]對通用BERT進行參數初置,解決對電力信息的自動挖掘問題。

近年來,許多研究聚焦于將Transformer方法應用于電力領域命名實體識別。顧亦然等[9]利用Transformer模型處理語料增強句子語義表示,解決電機領域中的實體識別問題;國網江蘇省電力公司[10]利用Transformer模型捕捉單詞之間的關系與上下文,但對電力專業領域的特點關注不足;徐曉軼等[11]在模型中引入Transformer編碼器機制,提升了模型在電力垂直領域的適應性。這些研究提升了在電力領域命名實體識別任務的效果,但在檢修規程等電力安全領域文本實體的實際分布中,存在大量嵌套實體等復雜實體,當前研究對該部分實體關注度不足,導致識別準確率受到影響。

為解決電力安全領域文本中的嵌套實體問題,本文提出了一種基于機器閱讀理解的命名實體識別方法。針對電力安全領域中存在大量嵌套實體的實際情況以及傳統基于機器閱讀理解方法對先驗知識利用不充分的問題,通過引入層次注意力機制的方法,對文本中的實體進行識別抽取,實現電力安全實體的精準識別。


本文詳細內容請下載:

http://www.xxav2194.com/resource/share/2000006557


作者信息:

葛朔1,鄒華1,潘明明2,王白根3

(1.北京郵電大學 計算機學院(國家示范性軟件學院),北京 100876;

2.中國電力科學研究院有限公司,北京 100192;

3.國網安徽省電力有限公司安慶供電公司,安徽 安慶 246000)


Magazine.Subscription.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 尤物视频www| 污网站视频在线观看| 国产精品极品美女自在线| 中文字幕123区| 欧美妇性猛交视频| 免费看污污的网站| 韩国理伦大片三女教师| 国产精成人品日日拍夜夜免费| 中国一级片在线观看| 日韩精品亚洲专区在线影视| 人人妻人人做人人爽精品| 自拍偷自拍亚洲精品播放| 国产欧美综合在线| 99久高清在线观看视频| 成人精品一区久久久久| 久久这里有精品视频| 永久免费AV无码网站YY| 午夜理论影院第九电影院| 国产妇乱子伦视频免费| 国产高潮国产高潮久久久| 一本到视频在线| 日本久久免费大片| 亚洲av色无码乱码在线观看| 澡人人澡人澡人人澡天天| 哈昂~哈昂够了太多太深小说| 国产成人精品免费视频动漫 | 免费被靠视频动漫| 野花社区视频在线观看| 国产精品亚洲欧美大片在线看| aaa日本高清在线播放免费观看| 成人私人影院在线版| 久久精品一区二区三区不卡| 欧美怡红院成免费人忱友;| 人妻少妇边接电话边娇喘| 老阿姨哔哩哔哩b站肉片茄子芒果| 国产欧美日韩精品第一区| 97精品一区二区视频在线观看| 婷婷激情狠狠综合五月| 久久99热66这里只有精品一| 春色www在线视频观看| 亚洲国产精品午夜电影|