《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 一種新的聯合塊對角化卷積盲分離時域算法
一種新的聯合塊對角化卷積盲分離時域算法
來源:電子技術應用2012年第2期
溫媛媛, 陳 豪
中國空間技術研究院 西安分院, 陜西 西安710000
摘要: 提出一種基于高階累積量聯合塊對角化的時域算法求解卷積混合盲信號分離問題。引入白化處理,將混疊矩陣轉變成酉矩陣,混合信號轉變為互不相關的,進而計算出其對應的一系列高階累積量矩陣,通過最小化代價函數來實現高階累積量矩陣聯合塊對角化的目的,在時域中解決超定卷積盲分離問題。實驗表明,相比于經典的自然梯度算法,所提方法的分離精度更高,且運算速度也更快。
中圖分類號: TN912.3
文獻標識碼: A
文章編號: 0258-7998(2012)02-0101-04
A new joint block diagonalization time-domain algorithm for convolutive blind separation
Wen Yuanyuan, Chen Hao
Xi’an Division of China Academy of Space Technology, Xi’an 710000, China
Abstract: This paper proposes a new time-domain joint block diagonalization algorithm based on the high-order cumulant for the blind source separation of convolutive mixtures. This paper adopts the whitening procedure to transform the mixing matrix into an unitary matrix. Computing the high-order cumulant matrixes of the mixing signals whitened, which can be transformed into block diagonal matrixes through minimizing the cost function. Simulations results illustrate that, the new method outperforms the classic natural gradient method in separation precision and operation speed, and can be efficiently applied to the blind source separation of convolutive mixtures.
Key words : blind source separation; convolutive mixtures; high-order cumulant; joint block diagonalization

    近年,盲信號分離BSS(Blind Source Separation)的研究已經成為信號處理領域的一個研究熱點,涌現出許多盲分離的算法。盲信號分離是在源信號和傳輸信道參數未知的情況下,僅根據源信號的統計特性,從觀測信號中分離源信號的過程[1]。盲信號分離所研究的混疊模型主要分為瞬時混疊和卷積混疊兩類。瞬時盲分離已經得到廣泛而成熟的研究,聯合塊(JBD)對角化是解決瞬時盲分離的有效方法[2-4]。然而,傳感器接收到的信號通常是源信號與多徑傳輸信道的卷積混疊信號,這使得卷積盲分離受到越來越多的關注[5-7]。

    與瞬時混疊模型相比,卷積混疊信號模型及其求解更為復雜。在現有方法中,基于高階統計量的時域算法[8-9]是解卷積混疊盲信號分離問題的一類直觀且有效的方法。作為時域算法,它不需要解決頻域算法[10-11]中所固有的又不得不解決的尺度模糊和排列模糊問題;同時,對一組高階累積量矩陣同時進行JBD又可以有效地抑制高斯噪聲的影響。鑒于這兩點,本文提出一種基于高階累積量的JBD時域算法,來解決卷積混疊盲信號分離問題。
1 問題描述
    盲信號分離的目的是把通過一未知混合系統后的觀測信號分離開來。在卷積混合情況下,假設源信號通過一個線性有限脈沖響應FIR濾波器,也就是說觀測信號是由它們的延遲所組成的線性組合,即:
 



    用參考文獻[14]中所提到的自然梯度算法來分離卷積混合的源信號,最后分離出來的信號波形如圖3所示。
    從兩種算法分離出的信號波形圖中很難明顯看出其性能的差別,下面通過兩個性能指標來客觀地分析一

陣。在此基礎上通過使代價函數最小化的方法來使累積量矩陣成為塊對角矩陣,進而實現盲分離。計算機仿真結果表明,本文算法與自然梯度算法相比有分離精度高及分離速度快的特點。

參考文獻
[1] HAYKIN S. Unsupervised adaptive filtering, vol I: Blind  source separation[M]. New York: Wiley Press, 2000:21-23.
[2] SIDIROPOULOS N D, BRO R, GIANNAKIS G B. Parallel  factor analysis in sensor array processing[J]. IEEE Trans Signal Process, 2000,48(8):2377-2388.
[3] VANDER V A J. Joint diagonalization via subspace fitting  techniques[A].In Proc.ICASSP’01[C]. Piscataway,NJ:IEEE  Press, 2001:2773-2776.
[4] ARIE Y. Non-orthogonal joint diagonalization in the leastsquares sensewith application in blind source[J]. IEEE Trans Signal Process, 2002, 50(7):1545-1553.
[5] ABED-MERIAM K, BELOUCHRANI A. Algorithms for joint block diagonaliztion[A]. In Proc. EUSIPCO’04[C]. Vienna:EURASIP Press,2004:209-212.
[6] FEVOTTE C, THEIS F J. Orthonormal approximate joint block diagonalization[R].Technical Report GET/Télécom Pairs, 2007D007, 2007.
[7] 胡可,汪增福.一種基于時頻分析的語音卷積信號盲分離算法[J].電子學報,2006,34(7):1246-1254.
[8] BUCHNER H, AICHNER R, KELLERMANN W. A generalization of blind source separation algorithms for convolutive mixtures based on second-order statistics[J]. IEEE Transactions on Speech and Audio Processing, 2005,13(1):120-134.
[9] GHENNIOUI H, FADAILI E M, MOREAU N T, et al. A nonunitary joint block diagonalization algorithm for blind  separation of convolutive mixtures of sources[J]. IEEE Signal Processing Letters, 2007,14(11): 860-863.
[10] SAWADA H, MUKAI R, ARAKI S, et al. A robust and precise method for solving the permutation problem of frequency-domain blind source separation[J]. IEEE Transactions on Speech and Audio Processing, 2004,12(5): 530-538.
[11] HE Z S, XIE S L, DING S X, et al. Convolutive blind source separation in the frequency domain based on sparse  representation[J]. IEEE Transactions on Audio, Speech,  and Language Processing, 2007,15(5):1551-1563.
[12] GOROKHOV A, LOUBATON P. Subspace based techniques for second order blind separation of convolutive mixtures with temporally correlated sources [J]. IEEE Trans.Circuit Syst., 1997,44(9):813-820.
[13] BOUSBIAH-SALAH H, BELOUCHRANI A,ABED-MERAM  K. Jacobi-like algorithm for blind signal separation of convolutive mixtures[J]. Electron. Lett.,2001(37):1049-1050.
[14] AMARI S, DOUGLAS S, CICHOCKI A,et al. Multichannel blind deconvolution and equalization using the natural gradient[J]. In Proc. 1st IEEE Workshop Signal Processing Advanced Wireless Commun., Paris, France, 1997(4):101-104.

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 欧洲最强rapper潮水免费| 美女扒开尿口让男人看的视频| 好吊妞视频免费视频| 久久综合九色综合欧美就去吻| 狠狠色综合网站久久久久久久 | 国产麻传媒精品国产AV| 中文字幕中文字幕| 曰本视频网络www色| 亚洲第一视频网站| 精品综合久久久久久888蜜芽| 国产成人av一区二区三区在线 | 国产欧美va欧美va香蕉在线| 99香蕉国产精品偷在线观看| 搡女人免费免费视频观看| 亚洲AV无码一区二区三区在线播放| 波多野结衣教师诱惑| 加勒比一本大道香蕉在线视频 | 在线观看亚洲一区| 一级视频在线免费观看| 日本簧片在线观看| 亚洲午夜一区二区电影院 | 电车上强制波多野结衣| 国产91po在线观看免费观看| 97国产在线视频公开免费| 国产精品电影一区二区三区| chinesestockings国产| 成人综合激情另类小说| 久久亚洲色www成人欧美| 欧美一区2区三区4区公司贰佰| 亚洲美女又黄又爽在线观看| 精品无码中文视频在线观看| 国产区在线视频| h视频在线观看免费| 国产黄色二级片| eeusswww电影天堂国| 成人亚洲网站www在线观看| 久久久久亚洲av无码专区| 最近中文字幕免费mv视频7| 亚洲欧洲精品成人久久曰影片| 理论亚洲区美一区二区三区| 动漫成人在线观看|