《電子技術(shù)應用》
您所在的位置:首頁 > 其他 > 設計應用 > 無需其它器件的低噪聲自調(diào)零放大器
無需其它器件的低噪聲自調(diào)零放大器
摘要: Analog Devices AD8553自調(diào)零儀表放大器具有獨特架構(gòu),其兩個增益設置電阻沒有公共結(jié)點。IC的前端是一個精密電壓電流轉(zhuǎn)換器,其中一個增益設置電阻R1設置跨導的大小。
Abstract:
Key words :

  Analog Devices AD8553儀表放大器的獨特架構(gòu)降低并聯(lián)設備噪聲。

  Analog Devices AD8553自調(diào)零儀表放大器具有獨特架構(gòu),其兩個增益設置電阻沒有公共結(jié)點(參考文獻1)。IC的前端是一個精密電壓電流轉(zhuǎn)換器,其中一個增益設置電阻R1設置跨導的大小。IC的末端是一個精密電流電壓轉(zhuǎn)換器,它的反饋電阻R2的值,根據(jù)G=2(R2/R1)共同決定全部電壓增益。可以發(fā)現(xiàn),兩個增益設置電阻是獨立的,輸入端的電壓控制電流源,用減少放大器數(shù)量的方法,滿足嚴格的低噪聲要求。

  多使用放大器減小噪聲分兩步。首先,假設放大器的隨機噪聲源相互獨立。進一步,假設噪聲服從高斯分布。當平均經(jīng)典電壓放大器的輸出時,通過使用N個放大器和三倍電阻減少噪聲到1/ (參考文獻2)。AD8553內(nèi)部架構(gòu)對幾乎無限個并聯(lián)IC工作時,僅允許使用N+1個電阻。通過并聯(lián)更多IC各自的輸入引腳,連接內(nèi)部電壓電流源容易并聯(lián)工作(圖1)。微伏級的輸入電壓偏置與若干IC的并聯(lián)輸入引腳配合不當是無害的,因為電壓電流轉(zhuǎn)換器的輸出電阻理論上是無窮大的。

電路圖

  并聯(lián)N次輸入端的網(wǎng)絡結(jié)果是單IC輸出電流的N

 

(VINP–VINN)/(2R1)或N倍。可以僅使用N個IC電流電壓端的一個。端反饋電阻為R2/N,在此,R2為單IC的期望電壓增益AV值。由于放大器噪聲的主要來源為輸入端,假設N個并聯(lián)電壓電流轉(zhuǎn)換器輸出電流的隨機器件標準差為σNII×公式 ,σI為電壓電流轉(zhuǎn)換器輸出電流的隨機器件標準差。這些結(jié)果與參考文獻2中的不同,文獻中作者通過多電壓平均的方法實現(xiàn)減小噪聲。另一方面,圖1電壓電流轉(zhuǎn)換器的共模輸出中電流的決定成分為單IC的N倍。下面的公式計算RSNR(相對信噪比),定義超過輸出噪聲標準差的輸出電流:RSNRN=(N×I)/(σI×公式)=公式×RSNR1。實際上,意味著電路噪聲減少到單IC的1/ 公式

 

       英文原文:

  Autozeroed amplifier with halved noise needs few components

  The unique architecture of the Analog Devices AD8553 instrumentation amplifier permits paralleling devices to lower noise.

  Marián Štofka, Slovak University of Technology, Bratislava, Slovakia; Edited by Charles H Small and Fran Granville -- EDN, 10/25/2007

  The Analog Devices AD8553 autozeroed instrumentation amplifier has a unique architecture in that its two gain-setting resistors have no common junction (Reference 1). The first stage of the IC is a precise voltage-to-current converter, in which the first gain-setting resistor, R1, sets the magnitude of the transconductance. The end stage of the IC is a precise current-to-voltage converter, in which the value of its feedback resistor, R2, co-determines the overall voltage gain as G="2"(R2/R1). You can exploit the fact that the two gain-setting resistors are separate and that the input stage is a voltage-controlled current source to lower the component count in amplifiers with extreme noise-reduction demands.

  You can use more amplifiers to reduce noise in two ways. First, assume that the sources of random noise in the amplifiers are mutually independent. Further, assume that the noise obeys a gaussian distribution. When averaging the outputs of classic voltage amplifiers, you can reduce the noise to a fraction of 1/ by using N amplifiers and three times as many resistors (Reference 2). The internal structure of the AD8553 allows you to use just N+1 resistors for an almost-unlimited number of ICs operating in parallel. By paralleling the respective input pins of more ICs, the connected internal volta

 

ge-to-current sources easily operate in parallel (Figure 1). The microvolt-range input-voltage-offset mismatch at paralleled input pins of several ICs is harmless here because the output resistances of the voltage-to-current converters are theoretically infinite.

 

  The net result of paralleling N input stages is that they output current of N(VINP–VINN)/(2R1), or N times that of a single IC. You use only one of the current-to-voltage stages of the N ICs. That stage’s feedback resistor has the value of R2/N, where R2 is the value for a desired voltage gain of AV in a single IC. Because the primary source of noise in an amplifying IC is its input stage, you can assume that the standard deviation of the random component of output current of the paralleled-N voltage-to-current converters is σNI=σI×, where σI is the standard deviation of the random component of output current of a voltage-to-current converter. These results differ from those in Reference 2, in which the authors perform noise reduction by averaging multiple voltages. On the other hand, the deterministic part of current at the common output of the voltage-to-current converters in Figure 1 has the value of N times that of the single IC. The following equation calculates the RSNR (relative signal-to-noise ratio),
which you define as the output current over the standard deviation of output noise: RSNRN=(N×I)/(σI×)=×RSNR1. It means that, in effect, the noise of the circuit has decreased to a fraction of 1/ compared with that of a single IC.

 

  References

  “AD8553 1.8V to 5V Auto-Zero, In-Amp with Shutdown,” Analog Devices, 2005.

  Štofka, Marián, “Paralleling decreases autozero-amplifier noise by a factor of two,” EDN, June 7, 2007, pg 94. 


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 国产欧美日韩成人| 扁豆传媒网站免费进入| 伊人久久大香线蕉综合AV| 黑人粗长大战亚洲女2021国产精品成人免费视频 | 第37部分夫妇交换系列| 国产成人亚洲综合a∨| 999精品在线| 成人试看120秒体验区| 亚洲AV无码精品色午夜果冻不卡| 特黄特色大片免费| 国产AV人人夜夜澡人人爽麻豆 | 日韩免费三级电影| 亚洲欧美成aⅴ人在线观看| 精品国偷自产在线视频| 国产吃奶摸下激烈视频无遮挡| 4399理论片午午伦夜理片| 娇妻借朋友高h繁交h| 久久亚洲精品11p| 欧美人与动人物姣配xxxx| 偷炮少妇宾馆半推半就激情| 色噜噜狠狠色综合成人网| 国产精品99久久免费| 99热都是精品久久久久久| 成人免费看吃奶视频网站| 久久国产精品久久| 欧美在线看片a免费观看| 人妻18毛片a级毛片免费看| 老色鬼久久亚洲av综合| 国产成a人片在线观看视频下载| 91免费福利视频| 女性无套免费网站在线看| 中文字幕无码不卡一区二区三区 | 欧洲一区二区三区在线观看| 亚洲综合视频在线| 精品无码久久久久久久久| 国产偷自拍视频| 四虎国产精品永久在线播放| 在线观看午夜亚洲一区| 一区二区三区欧美| 扒开两腿猛进入爽爽视频| 久久国产高清字幕中文|