《電子技術應用》
您所在的位置:首頁 > 電源技術 > 新品快遞 > 是什么限制了電源小型化?

是什么限制了電源小型化?

2018-05-16

  電源模塊發(fā)展至今,工程師們都著眼于如何將模塊做得更為小型化,輕量化,其實大家都明白可以通過提升開關頻率來提高產品的功率密度。但為什么迄今為止模塊的體積沒有變化太大?是什么限制了開關頻率的提升呢?

  開關電源產品在市場的應用主導下,日趨要求小型、輕量、高效率、低輻射、低成本等特點滿足各種電子終端設備,為了滿足現(xiàn)在電子終端設備的便攜式,必須使開關電源體積小、重量輕的特點,因此,提高開關電源的工作頻率,成為設計者越來越關注的問題,然而制約開關電源頻率提升的因素是什么呢?其實主要包括三方面,開關管、變壓器和EMI及PCB設計。

  1、開關管與開關頻率

  開關管作為開關電源模塊的核心器件,其開關速度與開關損耗直接影響了開關頻率的極限,下文為大家大概分析一下

  a、開關速度

  MOS管的損耗由開關損耗和驅動損耗組成,如圖1所示:開通延遲時間td(on)、上升時間tr、關斷延遲時間td(off)、下降時間tf。

1.jpg

  圖1  MOS管開關示意圖

  以FAIRCHILD公司的MOS為例,如圖2所示:FDD8880開關時間特性表。

2.jpg

  圖2  FDD8880開關時間特性表

  對于這個MOS管,它的極限開關頻率為:fs=1/(td(on)+tr+td(off)+tf) Hz=1/(8ns+91ns+38ns+32ns) =5.9MHz,在實際設計中,由于控制開關占空比實現(xiàn)調壓,所以開關管的導通與截止不可能瞬間完成,即開關的實際極限開關頻率遠小于5.9MHz,所以開關管本身的開關速度限制了開關頻率提高。

  b、開關損耗

  開關導通時對應的波形圖如圖2(A),開關截止時對應的波形圖如圖2(B),可以看到開關管每次導通、截止時開關管VDS電壓和流過開關管的電流ID存在交疊的時間(圖中黃色陰影位置),從而造成損耗P1,那么在開關頻率fs工作狀態(tài)下總損耗PS=P1 *fs,即開關頻率提高時,開關導通與截止的次數(shù)越多,損耗也越大,如下圖3所示。

3.jpg

  圖3  開關管損耗示意圖

  2、變壓器鐵損與開關頻率

  變壓器的鐵損主要由變壓器渦流損耗產生,如圖4所示。

  給線圈加載高頻電流時,在導體內和導體外產生了變化的磁場垂直于電流方向(圖中1→2→3和4→5→6)。根據(jù)電磁感應定律,變化的磁場會在導體內部產生感應電動勢,此電動勢在導體內整個長度方向(L面和N面)產生渦流(a→b→c→a和d→e→f→d),則主電流和渦流在導體表面加強,電流趨于表面,那么,導線的有效交流截面積減少,導致導體交流電阻(渦流損耗系數(shù))增大,損耗加大。

4.jpg

  圖4  變壓器渦流示意圖

  如圖5所示,變壓器鐵損是和開關頻率的kf次方成正比,又與磁性溫度的限制有關,所以隨著開關頻率的提高,高頻電流在線圈中流通產生嚴重的高頻效應,從而降低了變壓器的轉換效率,導致變壓器溫升高,從而限制開關頻率提高。

5.jpg

  圖5  變壓器鐵損與開關頻率關系圖

  3、EMI及PCB設計與開關頻率

  假設上述的功率器件損耗解決了,真正做到高頻還需要解決一系列工程問題,因為在高頻下,電感已經不是我們熟悉的電感,電容也不是我們已知的電容了,所有的寄生參數(shù)都會產生相應的寄生效應,嚴重影響電源的性能,如變壓器原副邊的寄生電容、變壓器漏感,PCB布線間的寄生電感和寄生電容,會造成一系列電壓電流波形振蕩和EMI問題,同時對開關管的電壓應力也是一個考驗。

  要提高開關電源產品的功率密度,首先考慮的是提高其開關頻率,能有效減小變壓器、濾波電感、電容的體積,但面臨的是由開關頻率引起的損耗,而導致溫升散熱設計難,頻率的提高也會導致驅動、EMI等一系列工程問題。

  ZLG致遠電子自主研發(fā)、生產的隔離電源模塊已有近20年的行業(yè)積累,當前采用全新方案,實現(xiàn)同類型產品,體積最小,例如E_UHBDD-10W模塊較上一代ZY_UHBD-10W體積縮減了一半,如下圖6所示。

6.png

  圖6  E_UHBDD-10WN與ZY_UHBD-10W規(guī)格對比

  同時為保證電源產品性能建設了行業(yè)內一流的測試實驗室,配備最先進、齊全的測試設備,全系列隔離DC-DC電源通過完整的EMC測試,靜電抗擾度高達4KV、浪涌抗擾度高達2KV,可應用于絕大部分復雜惡劣的工業(yè)現(xiàn)場,為用戶提供穩(wěn)定、可靠的電源隔離解決方案。

8.png


本站內容除特別聲明的原創(chuàng)文章之外,轉載內容只為傳遞更多信息,并不代表本網站贊同其觀點。轉載的所有的文章、圖片、音/視頻文件等資料的版權歸版權所有權人所有。本站采用的非本站原創(chuàng)文章及圖片等內容無法一一聯(lián)系確認版權者。如涉及作品內容、版權和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當措施,避免給雙方造成不必要的經濟損失。聯(lián)系電話:010-82306118;郵箱:aet@chinaaet.com。
主站蜘蛛池模板: 中文在线天堂资源www| 亚洲精品视频网| 高清永久免费观看| 岛国a香蕉片不卡在线观看| 亚洲午夜久久久久久尤物| 精品国产香蕉伊思人在线又爽又黄| 国产精品伦一区二区三级视频| 中国大陆高清aⅴ毛片| 最新精品国偷自产在线| 亚洲综合丁香婷婷六月香| 舔舔小核欲成欢| 国产特级毛片aaaaaaa高清| Aⅴ精品无码无卡在线观看| 日日操夜夜操视频| 亚洲中文字幕久久精品无码a| 直接观看黄网站免费视频| 国产亚洲欧美日韩精品一区二区| 2020天天干| 女的被触手到爽羞羞漫画| 久久国产热视频| 欧美国产日韩911在线观看| 免费一区二区三区四区| 色吊丝免费观看网站| 国产成人综合日韩精品无码| 91色视频在线| 小信的干洗店1~4| 久久久久亚洲AV无码专区网站 | 激情综合亚洲欧美日韩| 四虎影视成人永久免费观看视频| 国产xx肥老妇视频| 国产精品揄拍100视频| a毛片视频免费观看影院| 成人午夜兔费观看网站| 久久午夜福利无码1000合集| 欧美一级在线播放| 亚洲欧美日韩精品专区卡通| 男女猛烈xx00免费视频试看| 啦啦啦资源在线观看视频| 野花社区视频www| 国产无套粉嫩白浆在线观看| 2021日本三级理论影院|