《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 業界動態 > Presto工程公司將其測試能力擴展到100 GHz以上

Presto工程公司將其測試能力擴展到100 GHz以上

2018-09-07
關鍵詞: Presto MMW RF

  Booth B245 at European Microwave Week, Madrid, Spain 23-28 Sept 2018

  San Jose, CA, USA - 6 September 2018 - Presto Engineering will be at European Microwave Week, in Madrid, Spain (23-28 September 2018) where it will be announcing that can now providing high volume testing of semiconductor devices up to 100 GHz and beyond. Applications that use GHz frequencies, i.e. millimeter wavelengths (MMW), are increasing rapidly and thus driving the need for high volume device testing. For example, Internet over satellite connections, car ADAS systems, and other high-speed, data transfer solutions with a projected volume of more than a billion units by 2020.

1.jpg

  "Commercial test equipment does not test much about 50 GHz," explained Cédric Mayor, Presto's COO. "The current method used by most customers is in-house bench testing by hand which is slow and expensive. This is because testing equipment above 50 GHz becomes increasingly expensive as the frequency increases as it is non-standard. To solve this problem, we have created custom interfaces that step the test frequencies down into the range that commercial testers operate in. This enables us to provide a cost-effective testing service for ultra-high frequency or MMW devices and builds on our existing services for high frequency device testing."

  Another challenge of MMW devices is that the substrate used is often much more brittle than the usual CMOS, such as Gallium Arsenide or Gallium Nitride. As a result, the wafers are much more susceptible to breakage in transit and handling. To reduce the possibility of breakage, they are usually cut into quadrants once manufactured. A broken quadrant means fewer damaged parts compared to a whole broken wafer. However, the standard handling and test equipment is designed for circular wafers so Presto has developed its own quadrant handling adapters for its test equipment. On top of this, it is also key to be able to maintain a good correlation during the test and during the self-heating of the pulsed test methods, where continuous wave measurement is normally used. In this case, all the fixturing has to be able to control temperature and heat dissipation as well as include RF systematic error compensation for the measurements and maintain the correct reproducibility during production.

  "Testing at these high MMW frequencies also introduces RF issues that are not significant at lower frequencies," added Cédric Mayor. "Connectors and even tracks can affect the impedance or act as antennae so that the test platform and regime have to be designed to allow for this, based on our years of experience in RF testing. This includes ensuring that Design for Test is incorporated into the devices, especially as access to RF signals is complicated by the integration of antenna, especially when we have to deal with phase arrays or multiple antenna products. This places limitations on the probe card's physical design that need to be overcome by careful engineering design of the hardware. These issues also impact packaging options such that standard packages are not always appropriate, so we help customers select the optimal packaging such as stack-die, multi-die and even custom solutions to ensure the optimal performance."

  Among MMW applications already implemented or under consideration are short range wireless backhaul, connecting small cell wireless; data center interconnect (DCI) for cloud servers; radar, primarily automotive; body scanners for airport security; chip-to-chip communications on printed circuit boards where even short runs of wires or cables attenuate signals at these frequencies; and wireless communication protocols, such as 5G cellular, WiGig (802.11ad) and Wireless HD. For convenience, the markets can be considered in three segments: communications, automotive and cellular/consumer, as shown in Table 1, which includes estimates of the potential served available market (SAM) and unit volumes. The first two of these are in now. Communications, driven by expansion in small cell backhaul and cloud computing, has annual unit volumes for 2020 projected to be in the millions; and automotive, driven by assisted driving (with autonomous driving on the horizon), with projected volumes in the tens of millions. The third vertical segment, cellular/consumer, driven by WiGig and 5G mobile, is in development now with 2020 annual unit volumes projected to exceed one billion.

2.jpg

  Table 1: Major application segments for MMW, including estimates of served available market (SAM) and unit volumes in 2020


本站內容除特別聲明的原創文章之外,轉載內容只為傳遞更多信息,并不代表本網站贊同其觀點。轉載的所有的文章、圖片、音/視頻文件等資料的版權歸版權所有權人所有。本站采用的非本站原創文章及圖片等內容無法一一聯系確認版權者。如涉及作品內容、版權和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當措施,避免給雙方造成不必要的經濟損失。聯系電話:010-82306118;郵箱:aet@chinaaet.com。
主站蜘蛛池模板: 久久成人国产精品一区二区| 免费欧洲毛片A级视频无风险| 99久久超碰中文字幕伊人| 日本猛妇色xxxxx在线| 亚洲的天堂av无码| 美女让男人桶出水的网站| 国产真实偷乱小说| av片在线播放| 抱着娇妻让粗黑人人玩3p| 亚洲av午夜国产精品无码中文字| 爱情岛讨论坛线路亚洲高品质| 国产一级特黄高清免费下载| jizz性欧美2| 大学生粉嫩无套流白浆| 中文字幕一区二区三区免费视频| 暴力肉体进入hdxxxxx| 亚洲欧洲日产国码www| 精品久久久中文字幕二区| 国产伦理一区二区| 亚洲伊人久久网| 在总受文里抢主角攻np| 丝袜高跟浓精受孕h文| 日韩人妻无码一区二区三区久久99 | 免费绿巨人草莓秋葵黄瓜丝瓜芭乐| 欧洲97色综合成人网| 天堂网在线观看| 中文字幕精品无码亚洲字| 最近中文字幕mv高清在线视频| 亚洲精品天堂成人片AV在线播放 | 亚洲天堂2016| 从镜子里看我怎么c你| 野外亲子乱子伦视频丶久草资源| 国产精品制服丝袜一区| aaa特级毛片| 欧美国产日韩在线观看| 欧美亚洲国产精品久久第一页| 哒哒哒免费视频观看在线www | 喝茶影视喝茶影院最新电影电视剧 | 免费黄色app网站| 色综合久久88色综合天天| 国产激情视频网站|