《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 業界動態 > Presto工程公司將其測試能力擴展到100 GHz以上

Presto工程公司將其測試能力擴展到100 GHz以上

2018-09-07
關鍵詞: Presto MMW RF

  Booth B245 at European Microwave Week, Madrid, Spain 23-28 Sept 2018

  San Jose, CA, USA - 6 September 2018 - Presto Engineering will be at European Microwave Week, in Madrid, Spain (23-28 September 2018) where it will be announcing that can now providing high volume testing of semiconductor devices up to 100 GHz and beyond. Applications that use GHz frequencies, i.e. millimeter wavelengths (MMW), are increasing rapidly and thus driving the need for high volume device testing. For example, Internet over satellite connections, car ADAS systems, and other high-speed, data transfer solutions with a projected volume of more than a billion units by 2020.

1.jpg

  "Commercial test equipment does not test much about 50 GHz," explained Cédric Mayor, Presto's COO. "The current method used by most customers is in-house bench testing by hand which is slow and expensive. This is because testing equipment above 50 GHz becomes increasingly expensive as the frequency increases as it is non-standard. To solve this problem, we have created custom interfaces that step the test frequencies down into the range that commercial testers operate in. This enables us to provide a cost-effective testing service for ultra-high frequency or MMW devices and builds on our existing services for high frequency device testing."

  Another challenge of MMW devices is that the substrate used is often much more brittle than the usual CMOS, such as Gallium Arsenide or Gallium Nitride. As a result, the wafers are much more susceptible to breakage in transit and handling. To reduce the possibility of breakage, they are usually cut into quadrants once manufactured. A broken quadrant means fewer damaged parts compared to a whole broken wafer. However, the standard handling and test equipment is designed for circular wafers so Presto has developed its own quadrant handling adapters for its test equipment. On top of this, it is also key to be able to maintain a good correlation during the test and during the self-heating of the pulsed test methods, where continuous wave measurement is normally used. In this case, all the fixturing has to be able to control temperature and heat dissipation as well as include RF systematic error compensation for the measurements and maintain the correct reproducibility during production.

  "Testing at these high MMW frequencies also introduces RF issues that are not significant at lower frequencies," added Cédric Mayor. "Connectors and even tracks can affect the impedance or act as antennae so that the test platform and regime have to be designed to allow for this, based on our years of experience in RF testing. This includes ensuring that Design for Test is incorporated into the devices, especially as access to RF signals is complicated by the integration of antenna, especially when we have to deal with phase arrays or multiple antenna products. This places limitations on the probe card's physical design that need to be overcome by careful engineering design of the hardware. These issues also impact packaging options such that standard packages are not always appropriate, so we help customers select the optimal packaging such as stack-die, multi-die and even custom solutions to ensure the optimal performance."

  Among MMW applications already implemented or under consideration are short range wireless backhaul, connecting small cell wireless; data center interconnect (DCI) for cloud servers; radar, primarily automotive; body scanners for airport security; chip-to-chip communications on printed circuit boards where even short runs of wires or cables attenuate signals at these frequencies; and wireless communication protocols, such as 5G cellular, WiGig (802.11ad) and Wireless HD. For convenience, the markets can be considered in three segments: communications, automotive and cellular/consumer, as shown in Table 1, which includes estimates of the potential served available market (SAM) and unit volumes. The first two of these are in now. Communications, driven by expansion in small cell backhaul and cloud computing, has annual unit volumes for 2020 projected to be in the millions; and automotive, driven by assisted driving (with autonomous driving on the horizon), with projected volumes in the tens of millions. The third vertical segment, cellular/consumer, driven by WiGig and 5G mobile, is in development now with 2020 annual unit volumes projected to exceed one billion.

2.jpg

  Table 1: Major application segments for MMW, including estimates of served available market (SAM) and unit volumes in 2020


本站內容除特別聲明的原創文章之外,轉載內容只為傳遞更多信息,并不代表本網站贊同其觀點。轉載的所有的文章、圖片、音/視頻文件等資料的版權歸版權所有權人所有。本站采用的非本站原創文章及圖片等內容無法一一聯系確認版權者。如涉及作品內容、版權和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當措施,避免給雙方造成不必要的經濟損失。聯系電話:010-82306118;郵箱:aet@chinaaet.com。
主站蜘蛛池模板: 天天狠狠弄夜夜狠狠躁·太爽了| 久久精品中文字幕一区| 亚洲日韩在线视频| 亚洲乱码无码永久不卡在线| 亚州av综合色区无码一区| 久久夜色精品国产尤物| 久99久精品免费视频热77| 一级毛片视频播放| 91极品在线观看| 黑人巨大白妞出浆| 草莓视频网站下载| 粉色视频下载观看视频| 波多野结衣种子网盘| 欧美日韩亚洲国产精品| 最新国产精品好看的国产精品| 日本三级电电影在线看| 少妇中文字幕乱码亚洲影视| 在线国产视频观看| 国产成人精品免费视频软件| 国产一级淫片a| 亚洲色婷婷六月亚洲婷婷6月| 亚洲人成人一区二区三区| 久久99精品国产麻豆不卡| www.羞羞视频| 欧美va天堂va视频va在线| 美女被免费喷白浆视频| 毛片毛片毛片毛片毛片毛片| 日韩欧美国产亚洲| 好大好硬使劲脔我爽视频 | 日韩丰满少妇无码内射| 小小影视日本动漫观看免费| 国产精品视频a| 国产va免费精品高清在线观看| 亚洲精品自产拍在线观看| 久久综合AV免费观看| eeuss免费影院| 丁香婷婷亚洲六月综合色| 韩国女主播一区二区| 猫咪AV成人永久网站在线观看| 日韩精品无码免费一区二区三区| 婷婷色香五月综合激激情|