《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > EDA與制造 > 業(yè)界動(dòng)態(tài) > Imec與CARDIS合作伙伴開發(fā)出獨(dú)特的光子醫(yī)療器械——用于篩查動(dòng)脈硬度和診斷心血管疾病

Imec與CARDIS合作伙伴開發(fā)出獨(dú)特的光子醫(yī)療器械——用于篩查動(dòng)脈硬度和診斷心血管疾病

2019-01-17
關(guān)鍵詞: 光子 醫(yī)療器械 IMEC

  比利時(shí)魯汶和根特,2019年1月5日 — 世界領(lǐng)先的納米電子和數(shù)字技術(shù)研究與創(chuàng)新中心imec、根特大學(xué)、Medtronic和其他CARDIS項(xiàng)目合作伙伴共同開發(fā)了一款基于硅光子學(xué)的原型醫(yī)療器械,用于篩查動(dòng)脈硬度和診斷動(dòng)脈狹窄、心力衰竭等心血管疾病。INSERM在法國巴黎的蓬皮杜歐洲醫(yī)院(Georges Pompidou European Hospital)針對100名患者成功完成了臨床可行性研究。

  Cardiovascular disease (CVD) is among the leading causes of death globally. Early identification of individuals at risk allows for early intervention to halt or reverse the pathological process. Assessment of arterial stiffness by measurement of aortic pulse wave velocity (aPWV) is included in the latest guidelines for CVD risk prediction and it is a key marker for hypertension. However, no tools are available today to easily screen a large number of patients for arterial stiffness at a GP’s office. As a consequence, many individuals remain undiagnosed.

  In the Horizon 2020 project CARDIS, imec, Medtronic, and 7 other partners, have developed a prototype mobile, low-cost, point-of-care screening device for CVD. The device aims for measurement in a fast, reproducible and reliable way with minimal physical contact with the patient and minimal skills from the operator. The operating principle of the device is Laser Doppler Vibrometry (LDV), in which a very low-power laser is directed towards the skin overlying an artery. The skin’s vibration amplitude and frequency, resulting from the heart beat, are extracted from the Doppler shift of the reflected beam. The device includes two rows of six beams, thereby scanning multiple points on the skin above the artery in parallel.

  At the heart of the system is a silicon photonics chip containing the optical functionality of the multi-beam LDV device. The CARDIS chip was designed by the Photonics Research Group, an imec laboratory at Ghent University, and prototyped through imec’s silicon photonics technology platform iSiPP50G, and has been implemented using advanced optical packaging approaches developed at the Tyndall National Institute in Ireland. The system has then been integrated into a handheld device and validated for human use by Medtronic.

  A clinical feasibility study at the Georges Pompidou European Hospital in Paris has collected a substantial clinical dataset, both from healthy subjects as well as from patients with cardiovascular conditions. The quality of the device readings was found to be very good and adequate measurement results could be obtained in all subjects. Also, the measurement data and variability within sessions were in line with data and variability acquired by reference techniques. A full dataset is now available and in-depth analysis will be performed both at INSERM and at the biomedical engineering department of Ghent University with the support of Medtronic. Moreover, further clinical feasibility studies are planned in the Academic Hospital of Maastricht (The Netherlands).

  “The CARDIS device was well accepted by all patients, and it was considered useful and well tolerated,” states Dr. Pierre Boutouyrie, the cardiologist in charge of the feasibility study. “Feasibility of signal acquisition is excellent since a useful signal was acquired in 100% of the patients. Tolerance was excellent too, the time to get useful signals was less than 10 min, and patients barely noticed that a measurement was performed.”

  Roel Baets, head of the Photonics Research Group (imec/UGent), concludes: “Silicon photonics is a powerful technology that combines the unique sensing capabilities of photonics with the low-cost and miniaturization capabilities of silicon semiconductor technology. It’s exciting to know that our silicon photonic chip and prototype medical device hold the promise to change the lives of so many patients with cardiovascular diseases.”

  In a next step, a small series of the device will be produced to perform a clinical feasibility study on a larger group of patients and over a longer period of time. If this feasibility study demonstrates the ability of the technology to detect cardiovascular diseases at an early stage, high volume production can be initiated. One of the benefits of the silicon photonics technology is that at high volumes, the chip can be produced at low cost.

5c3e8d039361d-thumb.png

本站內(nèi)容除特別聲明的原創(chuàng)文章之外,轉(zhuǎn)載內(nèi)容只為傳遞更多信息,并不代表本網(wǎng)站贊同其觀點(diǎn)。轉(zhuǎn)載的所有的文章、圖片、音/視頻文件等資料的版權(quán)歸版權(quán)所有權(quán)人所有。本站采用的非本站原創(chuàng)文章及圖片等內(nèi)容無法一一聯(lián)系確認(rèn)版權(quán)者。如涉及作品內(nèi)容、版權(quán)和其它問題,請及時(shí)通過電子郵件或電話通知我們,以便迅速采取適當(dāng)措施,避免給雙方造成不必要的經(jīng)濟(jì)損失。聯(lián)系電話:010-82306118;郵箱:aet@chinaaet.com。
主站蜘蛛池模板: 亚洲色成人网一二三区| 老公和他朋友一块上我可以吗| 两个人看的www免费视频中文| 天堂资源中文在线| 国产露出调教91| 蜜桃成熟时无删减手机在线观看| 美女被免费网站91色| 男女做污污无遮挡激烈免费| 欧美日韩一区二区三区四区| 日韩成人国产精品视频| 我要看一级毛片| 天堂在线最新资源| 国产精品亚洲二区在线播放| 国产呻吟久久久久久久92| 啦啦啦www播放日本观看| 亚洲精品亚洲人成在线观看| 久青草无码视频在线观看| 一本久久综合亚洲鲁鲁五月天| 1卡二卡三卡四卡精品| 色噜噜人体337p人体| 毛片男人18女人19| 最近中文字幕mv2018免费看| 成年性生交大片免费看| 国产综合久久久久鬼色| 国产丰满眼镜女在线观看| 人妻少妇精品久久久久久| 乱中年女人伦av一区二区| 一级一级女人真片| 婷婷激情综合网| 福利一区二区在线| 果冻传媒麻豆影视在线观看免费版| 性欧美18-19性猛交| 国产精品中文久久久久久久| 四虎影视永久在线观看| 亚洲成人app| 丝袜人妻一区二区三区网站| 一进一出动态图| 精品国产一区二区三区不卡在线 | 日本三级做a全过程在线观看| 精品亚洲成A人在线观看青青| 欧美又大粗又爽又黄大片视频|