《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 其他 > 設(shè)計(jì)應(yīng)用 > 基于CNN-LSTM的支撐電容容值軟測(cè)量
基于CNN-LSTM的支撐電容容值軟測(cè)量
2021年電子技術(shù)應(yīng)用第9期
楊培盛1,付 宇1,李鴻飛2,初開麒2,王夢(mèng)謙2,李政達(dá)2
1.濟(jì)南軌道交通集團(tuán)建設(shè)投資有限公司,山東 濟(jì)南250014; 2.中車青島四方車輛研究所有限公司,山東 青島266033
摘要: 實(shí)時(shí)監(jiān)測(cè)功率變流器中支撐電容的老化狀態(tài),及時(shí)發(fā)現(xiàn)并更換存在缺陷的電容,對(duì)提高功率變換器的可靠性具有重要意義。基于相關(guān)電壓電流數(shù)據(jù),通過建立數(shù)據(jù)集,確定網(wǎng)絡(luò)模型參數(shù)和模型訓(xùn)練,最終得到基于CNN-LSTM的神經(jīng)網(wǎng)絡(luò)模型,并通過不同工況下的數(shù)據(jù)集對(duì)神經(jīng)網(wǎng)絡(luò)模型的準(zhǔn)確性進(jìn)行了驗(yàn)證。結(jié)果表明,該模型可對(duì)電容容值進(jìn)行可靠預(yù)測(cè)。
中圖分類號(hào): TN102;TM531
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.201128
中文引用格式: 楊培盛,付宇,李鴻飛,等. 基于CNN-LSTM的支撐電容容值軟測(cè)量[J].電子技術(shù)應(yīng)用,2021,47(9):16-19.
英文引用格式: Yang Peisheng,F(xiàn)u Yu,Li Hongfei,et al. Soft measurement of supporting capacitance based on CNN-LSTM[J]. Application of Electronic Technique,2021,47(9):16-19.
Soft measurement of supporting capacitance based on CNN-LSTM
Yang Peisheng1,F(xiàn)u Yu1,Li Hongfei2,Chu Kaiqi2,Wang Mengqian2,Li Zhengda2
1.Jinan Rail Transit Group Construction Investment Co.,Ltd.,Jinan 250014,China; 2.CRRC Qingdao Sifang Rolling Stock Research Institute Co.,Ltd.,Qingdao 266033,China
Abstract: It is of great significance to monitor the aging state of the supporting capacitors in the power converter in real time and to find and replace the defective capacitors in time. In this paper, based on the relevant voltage and current data, through the establishment of data sets, the network model parameters and model training are determined. Finally, the neural network model based on CNN-LSTM is obtained. The accuracy of the neural network model is verified by the data sets under different working conditions. The results show that the model can reliably predict the capacitance value.
Key words : support capacitor;CNN-LSTM;reliability;neural network

0 引言

    近年來(lái),電力電子系統(tǒng)的可靠性越來(lái)越引起社會(huì)各界的廣泛注意[1-2]。大量的研究及實(shí)踐表明,在軌道交通領(lǐng)域,實(shí)現(xiàn)軌道列車牽引系統(tǒng)的實(shí)時(shí)健康狀態(tài)監(jiān)測(cè),做到及時(shí)的故障預(yù)警和提前維修[3-4],將大大提高系統(tǒng)的可靠性,節(jié)約維修成本。

    直流母線支撐電容作為牽引系統(tǒng)的關(guān)鍵部件,其健康狀態(tài)隨著投入運(yùn)行年限的增加而變差,直流母線電容失效導(dǎo)致的列車系統(tǒng)停機(jī)甚至損毀給社會(huì)帶來(lái)了巨大的經(jīng)濟(jì)損失[5-6]。因此,支撐電容的狀態(tài)監(jiān)測(cè)技術(shù)成為了當(dāng)前研究的熱點(diǎn)[7-8]。支撐電容的容值能夠表征其真實(shí)的健康狀態(tài)[9],本文提出了一種大功率變流器直流母線電容容值的在線監(jiān)測(cè)方法,利用數(shù)據(jù)訓(xùn)練得到基于卷積神經(jīng)網(wǎng)絡(luò)-長(zhǎng)短期記憶網(wǎng)絡(luò)(Convolutional Neural Networks-Long Short Term Memory,CNN-LSTM)的神經(jīng)網(wǎng)絡(luò)模型[10],可以根據(jù)列車系統(tǒng)運(yùn)行過程中采集到的實(shí)時(shí)運(yùn)行數(shù)據(jù)進(jìn)行支撐電容值的準(zhǔn)確軟測(cè)量,對(duì)于實(shí)現(xiàn)支撐電容健康狀態(tài)在線監(jiān)測(cè)、提高功率變流器的可靠性具有重要意義。




本文詳細(xì)內(nèi)容請(qǐng)下載:http://www.xxav2194.com/resource/share/2000003737




作者信息:

楊培盛1,付  宇1,李鴻飛2,初開麒2,王夢(mèng)謙2,李政達(dá)2

(1.濟(jì)南軌道交通集團(tuán)建設(shè)投資有限公司,山東 濟(jì)南250014;

2.中車青島四方車輛研究所有限公司,山東 青島266033)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 中国人xxxxx69免费视频 | 野花香社区在线视频观看播放| 97人伦影院a级毛片| 97免费人妻在线视频| 揄拍自拍日韩精品| 波多野结衣和邻居老人| 国产乱人伦AV麻豆网| 2020国产精品永久在线观看| 官场猎艳警花美乳美妇| 久久免费精彩视频| 欧美成人免费网站| 免费a级毛片无码鲁大师| 菠萝蜜视频在线观看入口| 国产精品久久久久aaaa| JAPANESE国产在线观看播放| 放荡女同老师和女同学生| 亚洲av最新在线观看网址| 波多野结衣无限| 向日葵视频app免费下载| 麻豆三级在线播放| 国产精品国产三级国产专播 | 第四色最新网站| 国产亚洲精品第一综合| 亚洲香蕉久久一区二区| 在线观看免费视频资源| 一级白嫩美女毛片免费| 日本tvvivodes人妖| 亚洲AV无码不卡| 欧美日韩国产在线观看一区二区三区| 免费福利在线播放| 色哟哟国产精品免费观看| 国产成人yy精品1024在线| 0urp|ay加速器| 在线免费成人网| yy6080欧美三级理论| 无码精品a∨在线观看无广告| 久热青青青在线视频精品| 欧美人与物videos另类xxxxx| 亚洲精品免费在线| 男人扒开女人下面狂躁动漫版| 变态拳头交视频一区二区|