《電子技術應用》
您所在的位置:首頁 > 測試測量 > 設計應用 > 基于元學習的多頭注意力時序卷積的入侵檢測
基于元學習的多頭注意力時序卷積的入侵檢測
網絡安全與數據治理 7期
王明
(河北科技師范學院網絡技術中心,河北秦皇島066001)
摘要: 為解決現有入侵檢測方法在高階依賴關系挖掘,處理時序特征和應對新型攻擊手段檢測等方面性能不足的問題,提出了一種基于元學習的多頭注意力時序卷積的入侵檢測方法。該方法引入了多頭注意力機制,使模型能在不同尺度上捕捉網絡數據的時序特征和高階依賴關系。其次,結合多任務學習改進元學習算法對網絡未知攻擊進行識別,提升網絡未知攻擊的檢測性能,此外,設計了一種自適應特征提取策略,動態調整特征提取粒度,以適應不同類型的網絡攻擊。在公開數據集實驗對比表明,本文算法與主流算法相比,具有更高的準確率和F值。
中圖分類號:TP393.08;TP18
文獻標識碼:A
DOI:10.19358/j.issn.2097-1788.2023.07.008
引用格式:王明.基于元學習的多頭注意力時序卷積的入侵檢測[J].網絡安全與數據治理,2023,42(7):49-54.
Intrusion detection based on meta-learning with multi-head attention temporal convolution
Wang Ming
(Network Technology Center, Hebei Normal University Of Science & Technology, Qinhuangdao 066001, China)
Abstract: To address the performance limitations of existing intrusion detection methods in mining highorder dependency relationships, processing temporal features, and detecting new types of attack methods, this paper proposes an intrusion detection method based on metalearning and multihead attention temporal convolution. This method introduces a multihead attention mechanism, allowing the model to capture the temporal features and highorder dependency relationships of network data at different scales. Secondly, this paper combines multitask learning to improve the metalearning algorithm for identifying unknown network attacks, thus enhancing the detection performance of unknown network attacks. In addition, this paper designs an adaptive feature extraction strategy that dynamically adjusts the feature extraction granularity to adapt to different types of network attacks. Experimental comparisons on public datasets show that the proposed algorithm has higher accuracy and Fscore compared to mainstream algorithms.
Key words : intrusion detection; metaLearning ;multihead attention mechanism; temporal convolutional neural network

0    引言

網絡入侵檢測(Intrusion Detection System, IDS)是一種用于監測網絡活動的技術,旨在及時發現潛在的惡意行為、攻擊以及系統安全策略的違規行為。根據檢測方法的不同,網絡入侵檢測技術主要分為兩類:基于簽名的檢測技術(Signature-based Detection)和基于異常的檢測技術Anomalybased Detection)。隨著深度學習為代表的人工智能技術的發展,近年來研究者們已經嘗試利用深度學習技術解決網絡入侵檢測中的一些挑戰性問題,Gao等人提出了基于深度信念網絡(DBN)的入侵檢測方法,實現了較高的檢測準確率,但在處理大規模數據時計算復雜度較高。Kim等人提出了基于長短時記憶網絡(LSTM)的入侵檢測方法,利用LSTM捕捉時序特征以提高檢測性能,但對于未知攻擊的檢測能力有限。Tang等人采用自編碼器(AE)對網絡流量進行特征提取,提高了異常檢測的性能,但在處理時序相關性方面存在不足。Niyaz等人利用卷積神經網絡(CNN)進行入侵檢測,實現了較高的檢測準確率,但對高階依賴關系的挖掘仍有改進空間。Vinayakumar等人采用卷積神經網絡(CNN)對惡意URL進行檢測,實現了較高的檢測準確率,但在實時性方面存在局限。Lo等人提出了一種基于圖卷積神經網絡的入侵檢測方法,該方法利用圖結構挖掘網絡數據中的關聯信息,但在處理大規模網絡數據時效率有待提高。Cao等人利用卷積神經網絡和門控循環單元(GNU)進行網絡入侵檢測,有效地解決分類準確率低和類別不平衡的問題,但在處理未知攻擊和動態環境下的泛化能力方面存在挑戰。這些研究在網絡入侵檢測方面取得了一定的成果,但仍然存在一些問題。首先,許多現有方法對網絡數據的時序特征和高階依賴關系挖掘不足,導致檢測性能有限。其次,處理未知攻擊時,泛化性能有待提高。



本文詳細內容請下載:http://www.xxav2194.com/resource/share/2000005420




作者信息:

王明

(河北科技師范學院網絡技術中心,河北秦皇島066001)


微信圖片_20210517164139.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 国产午夜无码片在线观看| 天天摸天天做天天爽天天弄| 亚洲欧洲高清有无| 美女扒开屁股让男人桶| 国产激情视频一区二区三区| a级黄色毛片免费播放视频| 日日麻批免费40分钟无码| 亚洲国产精品一区二区九九| 第一福利官方导航大全| 国产人久久人人人人爽| 中国精品白嫩bbwbbw| 奇米四色77777| 久久99国产一区二区三区| 欧美一级欧美一级高清| 亚洲视频aaa| 美国bbbbbbbbb免费毛片| 国产成人18黄网站麻豆| 6080一级毛片| 天天躁日日躁狠狠躁av麻豆| 久久99热精品这里久久精品| 欧洲熟妇色xxxx欧美老妇| 亚洲精品福利网站| 精品国产乱码久久久久久1区2区| 国产喷水女王在线播放| 青青草原视频在线观看| 在线a免费观看最新网站| 一级女人18毛片免费| 日日噜噜噜夜夜爽爽狠狠| 久精品在线观看| 欧美国产一区二区| 亚洲高清资源在线观看| 精品视频www| 国产乱子经典视频在线观看| 欧美另类xxxxx极品| 国产精品自拍亚洲| h视频免费在线| 性欧美暴力猛交xxxxx高清| 久久亚洲精品无码VA大香大香 | 卡通动漫精品一区二区三区| 青青青激情视频在线最新| 国产欧美在线观看视频|