《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計(jì)應(yīng)用 > 基于遺傳算法和LightGBM的網(wǎng)絡(luò)安全態(tài)勢(shì)感知模型
基于遺傳算法和LightGBM的網(wǎng)絡(luò)安全態(tài)勢(shì)感知模型
網(wǎng)絡(luò)安全與數(shù)據(jù)治理
胡銳,徐芳,熊郁峰,熊洲宇,陳敏
江西省煙草公司吉安市公司
摘要: 針對(duì)傳統(tǒng)煙草工業(yè)系統(tǒng)中的網(wǎng)絡(luò)流量異常檢測(cè)方法存在的特征間聯(lián)系和上下文信息丟失等問題,提出了一種基于遺傳算法改進(jìn)的LightGBM模型,此模型能夠使得模型避免陷入局部最優(yōu)情況。首先通過計(jì)算構(gòu)建樹模型對(duì)數(shù)據(jù)降維,從高維數(shù)據(jù)中挖掘出對(duì)于檢測(cè)效果影響重要的關(guān)鍵特征信息,并使用提出的模型對(duì)這些關(guān)鍵特征信息進(jìn)行分析。為了評(píng)估模型的有效性與優(yōu)越性,使用準(zhǔn)確率和損失進(jìn)行模型評(píng)價(jià),并與其他網(wǎng)絡(luò)流量異常檢測(cè)模型Tabular model、TabNet、LightGBM、XGBoost進(jìn)行對(duì)比。使用公開數(shù)據(jù)集 CIC.IDS.2018 進(jìn)行實(shí)驗(yàn)分析。結(jié)果表明,在高特征的網(wǎng)絡(luò)安全態(tài)勢(shì)感知下,多分類和二分類的識(shí)別準(zhǔn)確率分別達(dá)99.43%和99.87%,在低特征情況下,多分類和二分類的識(shí)別準(zhǔn)確率分別達(dá)98.73%和99.39%,具有較高準(zhǔn)確率以及良好的靈活性和魯棒性。
中圖分類號(hào):TP393.0文獻(xiàn)標(biāo)識(shí)碼:ADOI:10.19358/j.issn.2097-1788.2024.03.003
引用格式:胡銳,徐芳,熊郁峰,等.基于遺傳算法和LightGBM的網(wǎng)絡(luò)安全態(tài)勢(shì)感知模型[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2024,43(3):14-20.
Network traffic anomaly identification and detection based on genetic algorithm and LightGBM
Hu Rui,Xu Fang,Xiong Yufeng,Xiong Zhouyu,Chen Min
Jiangxi Tobacco Company Ji′an City Company
Abstract: This study proposes an improved LightGBM model based on genetic algorithm to avoid problems such as the connection between features and the loss of contextual information in the network traffic anomaly detection method in traditional tobacco industry systems. This model can avoid the model falling into local optimal situations. First, the data dimensionality is reduced by calculating and constructing a tree model, and key feature information that is important to the detection effect is mined from high dimensional data, and the proposed model is used to analyze this key feature information. To evaluate the effectiveness and superiority of the model, this paper uses accuracy and loss to evaluate the model and compares it with other network traffic anomaly detection models Tabular model, TabNet, LightGBM, and XGBoost. Experimental analysis was conducted using the public data set CIC.IDS.2018. The results show that under high-feature network security situational awareness, the recognition accuracy of multi class and two-class classification reaches 99.43% and 99.87% respectively. In the case of low features, the multi-class recognition accuracy is 99.43%. The recognition accuracy of classification and binary classification reaches 98.73% and 99.39% respectively, which has high accuracy and good flexibility and robustness.
Key words : anomaly detection; machine learning; genetic algorithm; LightGBM

引言

網(wǎng)絡(luò)給諸多行業(yè)發(fā)展帶來了便利,但因網(wǎng)絡(luò)而導(dǎo)致的問題也日漸顯著,相繼出現(xiàn)了因網(wǎng)絡(luò)信息保護(hù)不利而導(dǎo)致的信息泄露、網(wǎng)絡(luò)詐騙、網(wǎng)絡(luò)監(jiān)聽等事件[1]。人工智能技術(shù)是網(wǎng)絡(luò)安全技術(shù)難題的重要解決手段,越來越多的研究著重于基于人工智能構(gòu)建網(wǎng)絡(luò)態(tài)勢(shì)感知模型[2]。應(yīng)對(duì)網(wǎng)絡(luò)攻擊的研究成為熱門[3-4],研究人員逐漸使用網(wǎng)絡(luò)安全態(tài)勢(shì)感知代替原有的被動(dòng)防御措施,能夠提前預(yù)測(cè)和發(fā)現(xiàn)潛藏的網(wǎng)絡(luò)攻擊。原始的網(wǎng)絡(luò)異常流量檢測(cè)模型中通常使用統(tǒng)計(jì)分析[5]等方法,由于是通過已有信息來進(jìn)行防范,往往因?yàn)轭A(yù)測(cè)效果差而達(dá)不到防范新型網(wǎng)絡(luò)攻擊的效果。


本文詳細(xì)內(nèi)容請(qǐng)下載:

http://www.xxav2194.com/resource/share/2000005929


作者信息:

胡銳,徐芳,熊郁峰,熊洲宇,陳敏

江西省煙草公司吉安市公司,江西吉安343009


雜志訂閱.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 成人综合视频网| 猫咪免费人成在线网站 | 无限资源日产好片| 亚洲综合在线成人一区| 野外做受又硬又粗又大视频| 国产精品无码dvd在线观看| 一区两区三不卡| 日本一区二区三区不卡在线视频| 亚洲午夜精品久久久久久人妖| 看全色黄大色黄女视频| 国产乱妇无码大黄aa片| 亚洲欧美校园春色| 国模无码视频一区| 一本大道香蕉高清视频app| 日本高清不卡码| 亚洲免费黄色网| 激情国产AV做激情国产爱| 午夜精品久久久久久99热| 青春草国产成人精品久久| 国产精品igao视频| 97sese电影| 奇米影视7777狠狠狠狠色| 中文字幕亚洲一区二区三区 | 最新在线中文字幕| 亚洲毛片在线免费观看| 粉嫩小仙女脱内衣喷水自慰| 国产一区二区三区免费在线观看 | 欧美另类xxx| 国产麻豆成人传媒免费观看| √天堂中文官网8在线| 新婚熄与翁公老张林莹莹| 久久精品亚洲精品国产欧美| 欧美成人观看视频在线| 人人爽人人爽人人爽人人片av| 综合偷自拍亚洲乱中文字幕| 国产在线精品一区二区| 两个人看www免费视频| 在线观看黄网址| zztt668.su黑料不打烊| 成熟女人牲交片免费观看视频 | 特级毛片a级毛片在线播放www|