《電子技術應用》
您所在的位置:首頁 > 人工智能 > 設計應用 > 基于毫米波雷達三維點云的室內跌倒檢測
基于毫米波雷達三維點云的室內跌倒檢測
電子技術應用
李偉1,李丹丹1,丁奇寧1,馬裕燚2,耿永福1
1.北方工業大學 信息學院;2.北方工業大學 電氣與控制工程學院
摘要: 全球老齡化時代的到來引發的老年人健康監護問題不可忽視,而室內跌倒對獨居的老年人有非常大的安全隱患。因此,為準確檢測到跌倒動作,使用毫米波雷達三維點云信息進行室內跌倒檢測,并提出一種基于外部注意力機制的PointLSTM網絡實現三維點云在時序的分類。通過MIMO體制的毫米波雷達芯片采集人體動作的回波信號,利用集成雷達基帶處理器的微控制器實現信號處理的部分,可將原始數據實時轉換成三維點云,并提高點云處理中的計算速度及雷達硬件的整體性能。基于外部注意力機制的PointLSTM網絡可實現點云在時空中的提取特征和分類識別,網絡改進了PointLSTM幀間點信息的流失問題,并在信息提取中對所有數據實現特征聯系,外部注意力機制通過獨立的可學習參數優化了網絡復雜度和識別精確率。實驗結果表明,所提出的方法在室內環境下檢測準確率可以達到98.3%,可以有效區分動作的類別,并驗證了使用毫米波雷達三維點云檢測人體跌倒的可行性。
中圖分類號:TN95 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.245007
中文引用格式: 李偉,李丹丹,丁奇寧,等. 基于毫米波雷達三維點云的室內跌倒檢測[J]. 電子技術應用,2024,50(9):59-66.
英文引用格式: Li Wei,Li Dandan,Ding Qining,et al. Indoor fall detection based on millimeter-wave radar three-dimensional point cloud[J]. Application of Electronic Technique,2024,50(9):59-66.
Indoor fall detection based on millimeter-wave radar three-dimensional point cloud
Li Wei1,Li Dandan1,Ding Qining1,Ma Yuyi2,Geng Yongfu1
1.School of Information Science and Technology, North China University of Technology; 2.School of Electrical and Control Engineering, North China University of Technology
Abstract: The advent of the global aging era has brought critical issues concerning the elderly health care to light, and indoor falls pose a significant safety risk to seniors who live alone. Therefore, in order to accurately detect the action of falling, this paper uses millimeter-wave radar 3D point cloud data for indoor fall detection and introduces a PointLSTM network based on an external attention mechanism to classify 3D point clouds over time. The millimeter-wave radar chip of the MIMO system collects the echo signal of human movements, and the signal processing part is realized by using the microcontroller integrated with the radar baseband processor, which can convert the raw data into a three-dimensional point cloud in real time, and improve the computing speed in point cloud processing and the overall performance of radar hardware. The PointLSTM network based on external attention mechanism enables spatial and temporal feature extraction and classification of point clouds. The network addresses the loss of point information between frames in PointLSTM and links features across all data during information extraction. The external attention mechanism, with its independent learnable parameters, optimizes network complexity and recognition accuracy. Experimental results show that the proposed method achieves a detection accuracy of 98.3% in indoor environments, effectively differentiating between types of motions and confirming the feasibility of using millimeter-wave radar 3D point clouds for detecting human falls.
Key words : millimeter-wave radar;point cloud classification;signal processing;deep learning

引言

據世界衛生組織報道,世界各國老年人的數量和占比都出現上升趨勢,而老年人因跌倒而出現重傷和死亡的風險最大[1]。跌倒不僅對老年人造成身體傷害,也會引起消極恐懼的情緒,能夠及時檢測到跌倒并作出提醒尤為重要。因此,本文使用毫米波雷達三維點云進行人體跌倒檢測,通過對人體姿態的分類準確地檢測出人體跌倒的行為,增強獨居老年人的安全保障。

實現跌倒檢測的方法有基于可接觸式和非接觸式設備。常見的人體跌倒檢測的可接觸式設備是基于加速度傳感器[2]和重力傳感器[3]等,但需隨身攜帶,影響日常生活,還會因未及時充電產生誤報現象。非接觸式設備主要有紅外、Wi-Fi、攝像機和雷達等,基于攝像機的方法容易侵犯個人隱私,易受環境、信號的影響,激光雷達和超寬帶雷達易受極端天氣的影響,且價格比較昂貴,而毫米波雷達測量精度高、可全天時全天候工作,性價比高。因此本文使用毫米波雷達進行人體跌倒檢測。

目前基于深度學習的毫米波雷達跌倒檢測方法大多是使用深度卷積神經網絡(CNN)對二維圖像進行空間特征提取[4]。相比雷達的二維圖像,三維點云圖更直觀形象,包含更豐富的有用信息。基于單幀點云的識別中,Pointnet網絡[5]可通過排列不變的最大池化實現全局特征提取,而Pointnet++[6]在前者的基礎上利用分層分組實現局部特征的提取,不斷迭代實現全局特征提取。Pantomime網絡[7]中結合Pointnet++和LSTM網絡,提取所有幀的全局特征實現對手勢的分類。FlickerNet模型[8]修改了分組操作,從相鄰幀中提取運動和結構特征,但缺乏捕獲長期關系的能力。PointLSTM模型[9]在此基礎上,提出一種關于無序點云的新型LSTM單元,用于捕獲點級別的長期關系。

受到以上方法的啟發,本文提出一種基于外部注意力機制的PointLSTM網絡結構實現點云在時空中的特征提取和分類識別,網絡改進了PointLSTM幀間點信息的流失問題,并在信息提取中對所有數據實現特征聯系,外部注意力機制通過獨立的可學習參數優化了網絡復雜度和識別精確率。


本文詳細內容請下載:

http://www.xxav2194.com/resource/share/2000006143


作者信息:

李偉1,李丹丹1,丁奇寧1,馬裕燚2,耿永福1

(1.北方工業大學 信息學院,北京 100043;

2.北方工業大學 電氣與控制工程學院,北京 100043)


Magazine.Subscription.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 7777精品伊人久久久大香线蕉| 久久精品国内一区二区三区| 老子的大ji巴cao死你| 国产综合免费视频| 中文字幕人成乱码熟女| 欧美久久久久久| 免费a级毛片无码| 被农民工玩酥了的张小婷| 国产精品日韩一区二区三区| 一级毛片免费一级直接观看| 晓青老师的丝袜系列| 亚洲精品无码av人在线观看 | 99久久精品费精品国产| 日本大片免aaa费观看视频| 亚洲国产高清视频在线观看| 精品久久久无码中文字幕| 国产剧果冻传媒星空在线| 18禁黄网站禁片无遮挡观看| 学霸c了我一节课| 久久久久无码中| 欧洲97色综合成人网| 亚洲精品成人网站在线播放| 精品国产麻豆免费人成网站| 国产凌凌漆免费观看国语高清| 三上悠亚在线网站| 多毛bgmbgmbgm胖在线| 中文字幕一区二区三区人妻少妇| 日韩精品人妻系列无码专区免费| 亚洲欧美久久精品1区2区| 男女久久久国产一区二区三区| 国产久视频观看| 91久久打屁股调教网站| 国产精品扒开腿做爽爽爽的视频| bt天堂在线www最新版资源在线 | 免费黄色网址在线播放| 青娱乐手机在线| 国产福利一区二区三区在线视频| 999影院成人在线影院| 女人扒开腿让男人桶| 中文字幕一区二区三区永久| 日本人强jizzjizz老|