《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于GRU神經網絡的有毒氣體擴散預測方法
基于GRU神經網絡的有毒氣體擴散預測方法
信息技術與網絡安全
陳 立,陳賢富
(中國科學技術大學 微電子學院,安徽 合肥230027)
摘要: 有毒氣體的擴散預測在應急響應中起著重要作用。現有的計算流體力學(CFD)方法存在計算耗時長等問題,無法快速進行毒害氣體擴散預測。提出了一種利用深度學習技術進行有毒氣體擴散預測的方法。根據有毒氣體擴散原理,設計基于GRU的神經網絡模型,實現快速、有效的氣體擴散濃度的預測。將本文的方法在經典的公開數據集草原牧場數據集上進行驗證,實驗結果表明本文方法可實現較高精度的氣體擴散濃度的預測,并且優于基于BP神經網絡模型的方法。
中圖分類號: TP18
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.04.007
引用格式: 陳立,陳賢富. 基于GRU神經網絡的有毒氣體擴散預測方法[J].信息技術與網絡安全,2021,40(4):42-45.
Prediction method of toxic gas diffusion based on gated recycle unit(GRU)
Chen Li,Chen Xianfu
(School of Microelectronics,University of Science and Technology of China,Hefei 230027,China)
Abstract: The prediction of toxic gas diffusion plays an important role in emergency response. Existing computational fluid dynamics(CFD) methods have problems such as time-consuming calculations and cannot quickly predict the diffusion of toxic gases. This paper proposes a method for predicting the diffusion of toxic gases using deep learning technology. According to the principle of toxic gas diffusion, a neural network model based on GRU is designed to realize fast and effective gas diffusion concentration prediction. The method is verified on the classic open data set of grassland and pasture data set. The experimental results show that the method can achieve high-precision gas diffusion concentration prediction and be better than the method based on BP neural network model.
Key words : toxic gas diffusion;concentration prediction;GRU;deep learning

0 引言

近年來,各國經常發生化工廠爆炸事故、危險品倉庫發生火災爆炸等引發的有毒氣體泄露[1],嚴重影響人們的生命財產安全。2018年12月18日,江蘇南通一化工廠設備爆裂,設備內的氮氣以及氟化氫泄漏,造成作業人員中毒死亡。2019年中國江蘇鹽城、美國休斯敦的化工廠爆炸均造成了大面積的有毒氣體的泄露。2020年11月9日1,浙江衢州中天東方氟硅材料有限公司發生火災事故,該起火災燃燒物質主要是氯硅烷,屬于高沸物,燃燒產物有毒。目前被廣泛使用的大氣擴散模型主要分為兩大類,一類是基于數理計算的,一類是基于機器學習的。數理計算的典型代表有高斯擴散模型[2]、計算流體力學(CFD)模型等。Mazzoldi[3]用高斯擴散模型模擬二氧化碳運輸和儲存設施泄漏的情況。高斯擴散模型使用簡單的數學表達式,易于計算,耗時少,但只適用于平坦地形上暢通無阻的氣體流動,在復雜環境下的預測往往不準確。PONTIGGIA M[4]用CFD模型模擬城市地區大氣中液化石油氣(LPG)擴散進行后果評估。CFD基于有限元計算,能較為精準地預測濃度擴散,但計算耗時長。2019年中國科學技術大學的程云芳[5]用機器學習算法粒子群-支持向量機模型,對苯儲罐泄漏的濃度進行了危險位置的短距離預測。這些方法仍基于傳統的機器學習方法。





本文詳細內容請下載:http://www.xxav2194.com/resource/share/2000003476




作者信息:

陳  立,陳賢富

(中國科學技術大學 微電子學院,安徽 合肥230027)


此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 亚洲精品中文字幕乱码三区| 99视频精品在线| 漂亮华裔美眉跪着吃大洋全集| 天天想你在线视频免费观看| 国产在线a免费观看| 国产欧美日韩另类va在线| 无码精品A∨在线观看十八禁| 最近高清中文国语在线观看| 色综七七久久成人影| 国产男女爽爽爽爽爽免费视频| 人与禽交免费网站视频| 国产精品久久自在自线观看| 真实国产乱子伦对白视频37p| 最新亚洲春色av无码专区| 欧美日韩一区二区综合| 美女黄频免费网站| 亚洲护士毛茸茸| 91在线看片一区国产| 中文字幕一区二区视频| 一级性生活免费| 国产精品视频h| 狠狠噜天天噜日日噜视频麻豆| 欧美第一页在线| 欧美xxxx成人免费网站| 最新国产三级在线观看不卡| 好吊妞视频在线| 国产美女久久精品香蕉69| 四虎永久地址4hu2019| 俄罗斯极品美女毛片免费播放| 久久精品99久久香蕉国产| 中文字幕在第10页线观看| а√天堂资源地址在线官网| 91成人高清在线播放| 天天影视色香欲综合免费| 菠萝蜜视频入口| 欧美交换乱理伦片在线观看| 日韩人妻精品一区二区三区视频| 国产大尺度吃奶无遮无挡网| 3d区在线观看| 欧美一区二区三区久久综| 从镜子里看我怎么c你|