《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 一種基于改進的馬爾可夫鏈的交通狀況預測模型
一種基于改進的馬爾可夫鏈的交通狀況預測模型
2022年電子技術應用第5期
周明升1,劉抒揚2
1.上海外高橋保稅區聯合發展有限公司,上海200131;2.上海商學院 商務信息學院,上海201400
摘要: 城市交通日益擁堵的今天,為用戶推薦最快行駛路線成為一個研究熱點。行駛路線推薦的核心問題是對路線將來某段時間(途徑這段線路時)交通狀況的預測。交通狀況受到路線本身狀況、行駛時間、天氣狀況、駕駛員習慣等多種因素影響,其變化快、變化方式復雜,難以準確預測。對多階馬爾可夫鏈模型進行了改進,提高了運算效率和響應速度,建立一種高效的交通狀況預測模型,經北京市實際交通數據的檢驗,得到了比較好的預測效果。
中圖分類號: TP391
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.211928
中文引用格式: 周明升,劉抒揚. 一種基于改進的馬爾可夫鏈的交通狀況預測模型[J].電子技術應用,2022,48(5):27-30,36.
英文引用格式: Zhou Mingsheng,Liu Shuyang. A prediction model for traffic conditions based on an improved Markov chain[J]. Application of Electronic Technique,2022,48(5):27-30,36.
A prediction model for traffic conditions based on an improved Markov chain
Zhou Mingsheng1,Liu Shuyang2
1.Shanghai Waigaoqiao Free Trade Zone United Development Co.,Ltd.,Shanghai 200131,China; 2.Faculty of Business Information,Shanghai Business School,Shanghai 201400,China
Abstract: With the growth of urban traffic jam, how to recommend the fastest driving route for end users has become a research focus. The core problem of route recommending is how to forecast the traffic condition of the route in future, when the user will drive on this route section. The traffic condition is influenced by many factors, like road condition itself, passing time, weather conditions and habits of the driver. Because traffic condition changes very fast and complicated, it is difficult to accurately predict directly. This paper proposed a traffic condition prediction model based on an improved M-order Markov chain, which is more efficient. The model was tested with the actual traffic data in Beijing, and got a good result.
Key words : Markov chain;traffic condition;routes recommending;prediction model

0 引言

    確定了用戶的出發地和目的地后,準確預測各條可能路線未來某段時間(行駛到達路段時)的交通狀況,可以為用戶推薦最優出行線路,減少行駛時間,也方便用戶私家車與公共交通的選擇。某段線路上的行駛時間應綜合考慮以下幾個因素:路線本身的情況、行駛到該路線上時的交通流量和駕駛員的駕駛習慣等。當前對交通狀況、路線推薦的研究主要有以下幾類:(1)基于交通分析的方法[1-2]:通過道路上的識別器及車流量信息,通過“識別器-車流量-行駛方向”的范式來研究交通狀況推薦路線,這種方法準確性的前提是要有足夠的識別器和車流量信息,數據獲取比較困難[3]。通過獲取車輛信息,估計實時交通流量,預測將來的交通狀況[4-6],其基于路段的分析需要借助大量數據進行分析,當采樣率低、數據稀疏時無法準確估計。(2)基于交通模式學習的方法:給出了概率為基礎的方法,通過用戶歷史GPS軌跡數據,預測駕駛員的目的地和行車路徑[7-8]。其通過學習GPS軌跡數據來獲取駕駛和速度模式計算最快路線[9-10]。(3)智能推薦:試圖挖掘駕駛員道路選擇的傾向,通過人機交互或推理模型推薦個性化路線,其推薦路線沒有隨行駛時間而優化[11]。其通過GPS軌跡數據,尋找關鍵節點和關鍵路線,結合用戶行為,推薦最快線路[12-13]




本文詳細內容請下載:http://www.xxav2194.com/resource/share/2000004271




作者信息:

周明升1,劉抒揚2

(1.上海外高橋保稅區聯合發展有限公司,上海200131;2.上海商學院 商務信息學院,上海201400)




wd.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 欧美一区二区影院| 亚洲精品无码mv在线观看| 久99频这里只精品23热视频| 男人的天堂网在线| 国产成人精品久久免费动漫| www.av视频在线| 日韩人妻无码一区二区三区久久99 | 国产性夜夜夜春夜夜爽| 成人动漫在线观看免费| 亚洲人成网站免费播放| 精品无码久久久久久久久久| 国产精品一区二区AV麻豆| 一区二区精品在线| 日韩人妻精品一区二区三区视频| 四虎在线永久精品高清| 2022韩国最新三级伦理在线观看| 成人国产一区二区三区| 亚洲va国产va天堂va久久| 男女边摸边揉边做视频| 国产午夜无码视频免费网站| 97久久天天综合色天天综合色hd | 1024在线播放| 婷婷被公交车猛烈进出视频| 久久精品国产一区二区电影| 欧美综合在线视频| 又硬又粗又长又爽免费看| 97久久天天综合色天天综合色 | 午夜三级黄色片| 黑人狠狠的挺身进入| 国产高中生粉嫩无套第一次| 三级理论中文字幕在线播放| 晓青老师的丝袜| 亚洲情xo亚洲色xo无码| 特级毛片aaaaaa蜜桃| 又粗又长又黄又爽视频| 贵妇的脚奴视频vk| 国产盗摄XXXX视频XXXX| 中文字幕在线不卡精品视频99| 果冻传媒国产电影免费看| 亚洲综合一区二区精品久久| 精品国产日韩亚洲一区二区|