《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 基于深度自適應小波網絡的通信輻射源個體識別
基于深度自適應小波網絡的通信輻射源個體識別
網絡安全與數據治理 2023年第5期
劉高輝,于文濤
(西安理工大學自動化與信息工程學院,陜西西安710048)
摘要: 針對現有的通信輻射源個體識別方法中人工提取特征復雜以及深度學習網絡的識別機制缺乏清晰解釋的問題,提出了一種基于深度自適應小波網絡(Deep Adaptive Wavelet Network,DAWN)的通信輻射源個體識別方法。首先分析了選擇互調干擾作為輻射源間個體特征的原因;接著應用了可實現提升小波變換的卷積神經網絡結構去提取特征,并在其基礎上設計出可以同時完成特征提取和識別的DAWN;最后,選擇Oracle數據集驗證方法的可行性。實驗結果表明:利用DAWN對5個通信輻射源個體識別的準確率為95.5%,并且方法具有良好的抗噪性。
中圖分類號:TN911.7
文獻標識碼:A
DOI:10.19358/j.issn.2097-1788.2023.05.012
引用格式:劉高輝,于文濤.基于深度自適應小波網絡的通信輻射源個體識別[J].網絡安全與數據治理,2023,42(5):71-77.
Individual recognition of communication radiation source based on depth adaptive wavelet network
Liu Gaohui,Yu Wentao
(Automation and Information Academy,Xi'an University of Technology,Xian 710048,China)
Abstract: Aiming at the problem of the complex artificial features extracted in the existing individual recognition methods of communication radiation sources and the lack of clear interpretation of the recognition mechanism of deep learning networks, an individual recognition method of communication radiation sources based on Deep Adaptive Wavelet Network (DAWN) is proposed. Firstly, the intermodulation interference is analyzed as the reason for individual characteristics between radiation sources. Then, the convolutional neural network structure that can realize lifting wavelet transform is applied to extract features, based on which DAWN can complete feature extraction and recognition at the same time. Finally, Oracle data sets are selected to verify the feasibility of the method. The experimental results show that the accuracy of identification of 5 communication radiation sources by DAWN is 955%, and the method has good antinoise performance.
Key words : specific emitter identification;lifting wavelet transform;depth adaptive wavelet network

0     引言

隨著物聯網和通信技術的發展,無線設備呈現出指數級的增長態勢,未來海量的敏感機密數據將在無線設備間傳輸,所以對通信輻射源進行個體識別對保證無線通信網絡中的信息安全有著重要的實際意義。



本文詳細內容請下載:http://www.xxav2194.com/resource/share/2000005337




作者信息:

劉高輝,于文濤

(西安理工大學自動化與信息工程學院,陜西西安710048)


微信圖片_20210517164139.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 久久久久无码国产精品不卡| 全黄性性激高免费视频| 99久久婷婷国产综合亚洲| 日本精品少妇一区二区三区| 亚洲欧美黄色片| 精品在线视频一区| 国产成人在线观看网站| 99热精品久久只有精品| 日本乱码视频a| 亚洲国产欧美日韩精品一区二区三区| 精品国产污污免费网站入口| 国产成人久久av免费| 91色视频在线| 美女羞羞免费视频网站| 国产精品酒店视频免费看| 不用付费的黄色软件| 曰批全过程免费视频免费看| 亚洲综合激情视频| 老妇高潮潮喷到猛进猛出| 国产永久免费高清在线观看视频| chinese乱子伦xxxx视频播放| 日本一卡二卡≡卡四卡精品| 亚洲人成自拍网站在线观看| 男女下面进入拍拍免费看| 国产一卡2卡3卡四卡精品一信息| jizz性欧美12| 在线看无码的免费网站| 中国sで紧缚调教论坛| 日韩专区第一页| 亚洲另类自拍丝袜第五页| 男性gay黄免费网站| 国产A级三级三级三级| 丰满大白屁股ass| 国产精品爽爽影院在线| www色在线观看| 探花视频在线看视频| 久久香蕉国产线看精品| 欧美日韩一区二区三区四区 | 国产69精品久久久久777| 日本理论片www视频| 国产自产视频在线观看香蕉|