《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于預訓練模型的基層治理敏感實體識別方法
基于預訓練模型的基層治理敏感實體識別方法
電子技術應用
吳磊1,汪杭軍2
(1.浙江農林大學 數學與計算機科學學院,浙江 杭州 311300; 2.浙江農林大學暨陽學院 工程技術學院,浙江 諸暨 311800)
摘要: 基層治理產生的大量敏感數據可通過數據脫敏去除隱私內容,但這些數據包含較多非結構化文本數據,難以直接進行數據脫敏。因此,需要對非結構化文本數據進行命名實體識別以提取敏感數據。首先把敏感實體分為16類并對信訪文本進行標注,輸入層表示采用預訓練模型BERT,編碼層利用雙向長短時記憶網絡汲取上下文信息,解碼層通過條件隨機場模型優化序列,構建了較高精度的基層治理敏感實體識別模型。針對脫敏工作需要,改變假陰性和假陽性的loss權重,并采用敏感實體框選率輔助評價模型性能。在基層治理信訪數據集和公共數據集MSRA上進行實驗,F1值分別為88.38%和90.11%,相較于基準模型提升了4.64%和3.78%。該模型可應用于非結構化文本的敏感實體識別,識別成功率高。現有評價指標未能較好地反映敏感實體的間接推理關系,應當探索更完善的敏感實體評價體系。
中圖分類號:TP391.1 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.233942
中文引用格式: 吳磊,汪杭軍. 基于預訓練模型的基層治理敏感實體識別方法[J]. 電子技術應用,2023,49(9):109-114.
英文引用格式: Wu Lei,Wang Hangjun. Identification method of sensitive entities in grassroots governance based on pre-training models[J]. Application of Electronic Technique,2023,49(9):109-114.
Identification method of sensitive entities in grassroots governance based on pre-training models
Wu Lei1,Wang Hangjun2
(1.School of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China; 2.College of Engineering and Technology, Jiyang College of Zhejiang A&F University, Zhuji 311800, China)
Abstract: A large number of sensitive data generated by grassroots governance can be desensitized to remove private content, but these data contain more unstructured text data, which is difficult to desensitize directly. Therefore, it is necessary to identify named entities from unstructured text data to extract sensitive data.Firstly, the sensitive entities are divided into 16 categories and the letters and visits are labeled. The input layer is represented by the pre-trained model BERT, and the coding layer uses the bidirectional long short-term memory network to extract the context information. The decoding layer constructs a highly accurate identification model for sensitive entities in grassroots governance through the conditional random field model optimization sequence. According to the needs of desensitization, the loss weight of false negative and false positive is changed, and the Box Selection rate of sensitive entities is used to assist in evaluating the performance of the model.Experiments were conducted on the grassroots governance petition data set and the public data set MSRA. The F1 values were 88.38% and 90.11%, respectively, which were 4.64% and 3.78% higher than the benchmark model. The model can be applied to sensitive entity recognition of unstructured text with high recognition success rate.The existing evaluation indicators fail to better reflect the indirect reasoning relationship of sensitive entities, and a more perfect evaluation system of sensitive entities should be explored.
Key words : pre-trained language model;grassroots governance;Chinese named entity recognition;data masking

0 引言

隨著中國特色社會主義進入新時代,構建現代化的基層治理體系對鄉村振興和國家長治久安意義重大,而治理體系現代化需要信息化要素的融入[1]。基層治理數字化產生的大量數據經過數據分析與挖掘,可用于鄉、鎮、街道的信息化、智慧化建設。這些數據難以避免地會包含個人隱私信息,且在現有安全條件下這些數據采集和使用可能存在數據泄露風險[2]。數據脫敏是一種將結構化或非結構化數據中的敏感信息按照一定脫敏規則進行數據變形的技術,經過脫敏后的數據兼顧了可用性和安全性,能夠在保護隱私的前提下正常應用于各個場景。文獻[3]闡述司法領域結構化文本和非結構化文本的脫敏問題,并以匈牙利法律文件作為案例研究可能的方案。該文獻提供了一種思路,即將命名實體識別與數據脫敏聯系起來。結構化數據中敏感數據較為明確,可依據不同的數據列劃分,但非結構化數據需要將敏感數據從大量文本中識別出來,這就需要命名實體識別技術應用于基層治理文本的數據脫敏過程中。

命名實體識別[4]是一種從非結構化文本中識別出具有特定意義實體的技術,為自然語言處理中的一項基礎任務。該任務有助于關系抽取、知識圖譜等下游任務[5]。常見的實體有人名、地名、機構名等,例如在“李彥宏在北京舉辦了百度AI開發大會”識別出李彥宏(人名)、北京(地名)、百度(機構名)3個實體。命名實體識別技術的發展可劃分為3個階段:基于詞典和規則的方法、基于機器學習的方法和基于深度學習的方法[4]。除了通用語料的實體識別,還存在面向特定應用場景的領域命名實體識別(Domain Named Entity Recognition,DNER),例如醫療、生物、金融、司法、農業等領域[6]。雙向長短期記憶網絡(Bidirectional Long Short-Term Memory Networks,BiLSTM)和條件隨機場(Conditional Random Field,CRF)的組合模型由于良好的表現,在不同領域都被作為最經典的模型而廣泛使用。本文將基層治理非結構化文本的敏感詞識別任務轉換為命名實體識別任務,沿用常規的序列標注方法。

英文單詞之間有空格劃分,分詞邊界明確,以及首字母、詞根、后綴等區分信息使得命名實體識別表現較好。而中文最明顯的特點是詞界模糊,沒有分隔符來表示詞界[7]。由于中文字詞之間沒有空格分隔,中文命名實體識別若以詞粒度劃分,必須先進行分詞。分詞錯誤導致的誤差傳遞使得詞粒度識別效果差于字粒度。因此,中文命名實體識別常采用字粒度進行識別。文獻[8]綜述了中文命名實體識別的方法、難點問題和未來研究方向。文獻[9]通過在中文詞嵌入加入語義、語音信息以提升識別效果。目前,命名實體識別廣泛應用于各個領域,但在基層治理領域的相關應用較少。與通用領域數據相比,基層治理過程中的敏感信息識別實體嵌套、一詞多義和字詞錯誤等問題更為嚴重。

此外,通用領域的命名實體識別雖包含了人名、地名和機構名等部分敏感實體,但未能將身份證號、手機號和銀行卡號等數字類型的敏感實體作為數據標注,難以包含基層治理過程中產生的眾多敏感實體類型。



本文詳細內容請下載:http://www.xxav2194.com/resource/share/2000005647




作者信息:

吳磊1,汪杭軍2

(1.浙江農林大學 數學與計算機科學學院,浙江 杭州 311300;2.浙江農林大學暨陽學院 工程技術學院,浙江 諸暨 311800)

微信圖片_20210517164139.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 挺进邻居丰满少妇的身体| 99精品视频在线观看免费专区| 欧美黑人疯狂性受xxxxx喷水| 在线观看国产91| 久久久综合视频| 欧美成人高清手机在线视频| 国产探花在线精品一区二区| jizzyou中国少妇| 日本另类z0zx| 亚洲图片激情小说| 精品国产AV色欲果冻传媒| 国产在线拍揄自揄视精品不卡| 7777精品伊人久久久大香线蕉| 日韩欧美伊人久久大香线蕉| 亚洲精品无码人妻无码| 麻豆视频免费观看| 成熟女人特级毛片www免费| 亚洲免费人成在线视频观看| 色综合久久综合网欧美综合网| 国产精品熟女一区二区| 久久亚洲欧美综合激情一区| 欧美日韩亚洲国产精品| 国产乱码一区二区三区| 三级视频在线播放| 无翼乌邪恶工番口番邪恶| 亚洲人成无码www久久久| 看久久久久久a级毛片| 国产三级观看久久| 欧美成人久久久| 成人影院在线观看视频| 么公的好大好深视频好爽想要| 美女又黄又免费的视频| 国产寡妇树林野战在线播放| 一本到在线观看视频| 日本肉体xxxx裸交| 亚洲伊人成无码综合网| 波多野结衣在线视频观看| 全彩无翼乌之不知火舞无遮挡| 中国精品白嫩bbwbbw| 天下第一社区视频welcome| 中文字幕一区二区三区乱码|