《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于改進型極限學習機的電子鼻氣體濃度檢測
基于改進型極限學習機的電子鼻氣體濃度檢測
2021年電子技術應用第10期
王 潔,陶 洋,梁志芳
重慶郵電大學 通信與信息工程學院,重慶400065
摘要: 針對目前電子鼻應用于氣體污染物濃度檢測時難以達到理想精度的問題,提出基于粒子群算法與人工蜂群算法的極限學習機(Particle Swarm Optimization and Artificial Bee Colony algorithm based Extreme Learning Machine,PSOABC-ELM)算法,通過改進極限學習機輸入層與隱含層權值和隱含層閾值隨機的缺陷,提高電子鼻濃度檢測的精度。將PSOABC-ELM算法與其他算法進行比較,并在公開數據集上進行驗證。實驗結果表明,PSOABC-ELM算法用于電子鼻氣體濃度檢測時比其他算法精準度更高,檢測結果誤差更小,模型穩定性更強,為電子鼻氣體濃度檢測提供了一種新的方法。
中圖分類號: TN02;TP212
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.211309
中文引用格式: 王潔,陶洋,梁志芳. 基于改進型極限學習機的電子鼻氣體濃度檢測[J].電子技術應用,2021,47(10):63-67.
英文引用格式: Wang Jie,Tao Yang,Liang Zhifang. Gas concentration detection of E-nose based on improved ELM[J]. Application of Electronic Technique,2021,47(10):63-67.
Gas concentration detection of E-nose based on improved ELM
Wang Jie,Tao Yang,Liang Zhifang
School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications, Chongqing 400065,China
Abstract: Aiming at unsatisfied ideal accuracy of electronic nose while testing the concentration of gas pollutants,the particle swarm optimization and artificial bee colony algorithm based extreme learning machine(PSOABC-ELM) algorithm is proposed. The accuracy of electronic nose concentration detection is enhanced by improve extreme learning machine weights of input layer and hidden layer and hidden layer threshold random defects. PSOABC-ELM is compared with other algorithms and validated on the public data set. The results show that the PSOABC-ELM algorithm perform better than the others when Testinggas concentration of electronic nose, and the detection result error is smaller and the algorithm stability is stronger, which provides a new method for the detection of gas concentration of electronic nose.
Key words : electronic nose;particle swarm optimization;artificial bee colony algorithm;extreme learning machine;concentration detection

0 引言

    電子鼻是一種仿生嗅覺系統,由氣體傳感器陣列和模式識別算法組成,主要用于氣體識別[1],在環境監測[2]、食品檢測[3]和醫療診斷[4]等多個領域均有所應用。電子鼻系統通過其內部的氣體傳感器陣列對氣體信息進行采集,將氣體信號轉變為電信號,再通過模式識別算法的處理輸出對應氣體的濃度檢測結果。

    針對電子鼻模式識別系統,目前提出了多種網絡模型,其中極限學習機是由黃廣斌提出的一種典型單隱層前饋神經網絡(Single-hidden Layer Feedforward Networks,SLFN)[5],與其他神經網絡(BP神經網絡[6]、支持向量機[7](Support Vector Machine,SVM))相比,其結構簡單,不需要反復迭代,學習速度快,泛化性能好,具有良好的函數逼近能力,因此被廣泛應用于解決各種分類和回歸的問題。但由于ELM輸入層與隱含層的權值以及隱含層的閾值是隨機給定的,這將會降低網絡模型對濃度的檢測精度。

    針對目前電子鼻在檢測氣體濃度精度不高的問題,本文利用粒子群算法的局部搜索能力和人工蜂群算法的全局搜索能力,將兩個算法進行嵌入融合,并與極限學習機相結合,最終達到提高電子鼻氣體濃度檢測精度的目的。




本文詳細內容請下載:http://www.xxav2194.com/resource/share/2000003784




作者信息:

王  潔,陶  洋,梁志芳

(重慶郵電大學 通信與信息工程學院,重慶400065)




wd.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 欧美一级高清免费播放| 香港三级理论在线影院| 无码不卡中文字幕av| 亚洲日本乱码在线观看| 精品日产一区二区三区| 国产成人无码一区二区三区 | 竹菊影视欧美日韩一区二区三区四区五区 | a级毛片免费全部播放| 日本三级香港三级人妇99| 亚洲成av人片在线观看无码不卡 | 伊人热人久久中文字幕| 蜜芽亚洲av无码精品色午夜 | 久久婷婷国产综合精品| 欧美日韩精品国产一区二区| 制服丝袜在线不卡| 麻豆va一区二区三区久久浪| 国内大量揄拍人妻精品視頻| 一本一本久久a久久综合精品 | 2019天堂精品视频在线观看| 好男人www社区| 久久久久久人妻一区二区三区| 欧美日韩中文国产va另类| 免费看欧美一级特黄a大片一| 蜜臀AV在线播放一区二区三区 | 爱情岛永久地址www成人| 四虎成人国产精品视频| 黄色网址中文字幕| 国产精品久久久久久网站| 99re最新地址精品视频| 好男人视频网站| 中文字幕在线观看免费| 日本高清二区视频久二区| 亚洲一区二区久久| 欧美精品久久天天躁| 佐佐木明希哔哩哔哩| 精品成人一区二区三区免费视频| 国产午夜精品一区二区三区漫画| 中文字幕日韩精品麻豆系列| 国产香蕉国产精品偷在线| japanese日本熟妇多毛| 戍人视频fc2最近一周|