《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 其他 > 設(shè)計(jì)應(yīng)用 > 基于互信息變量選擇的燃煤機(jī)組SCR脫硝系統(tǒng)PSO-ELM建模
基于互信息變量選擇的燃煤機(jī)組SCR脫硝系統(tǒng)PSO-ELM建模
網(wǎng)絡(luò)安全與數(shù)據(jù)治理 9期
張瑾,姜浩,金秀章
(華北電力大學(xué)控制與計(jì)算機(jī)工程學(xué)院,河北保定071003)
摘要: 針對(duì)燃煤機(jī)組SCR脫硝系統(tǒng)出口NOx濃度存在測(cè)量滯后以及吹掃時(shí)數(shù)據(jù)失真等問(wèn)題,提出了一種基于特征提取和粒子群算法(PSO)優(yōu)化極限學(xué)習(xí)機(jī)(ELM)超參數(shù)的燃煤機(jī)組SCR脫硝系統(tǒng)模型。利用互信息(MI)進(jìn)行時(shí)間遲延補(bǔ)償,采用最大相關(guān)最小冗余(mRMR)方法篩選輔助變量,通過(guò)PSO優(yōu)化算法確定ELM最優(yōu)超參數(shù)并建立預(yù)測(cè)模型,最后進(jìn)行對(duì)比驗(yàn)證。仿真結(jié)果表明:采用本文方法所建立的PSO-ELM預(yù)測(cè)模型的均方誤差和相關(guān)系數(shù)分別為0.931 4 mg/m3和0.978 6,預(yù)測(cè)精度高,能夠?yàn)槊撓跸到y(tǒng)出口NOx的現(xiàn)場(chǎng)優(yōu)化控制提供技術(shù)支持。
中圖分類(lèi)號(hào):X773
文獻(xiàn)標(biāo)識(shí)碼:A
DOI:10.19358/j.issn.2097-1788.2023.09.013
引用格式:張瑾,姜浩,金秀章.基于互信息變量選擇的燃煤機(jī)組SCR脫硝系統(tǒng)PSO-ELM建模[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2023,42(9):88-95.
PSO-ELM modeling of SCR denitrification system of coal-fired units based on mutual information variable selection
Zhang Jin,Jiang Hao ,Jin Xiuzhang
( School of Control and Computer Engineering,North China Electric Power University,Baoding 071003,China)
Abstract: Aiming at the problems of NOx concentration at the outlet of selective catalytic reduction (SCR) denitration system of coal-fired units, such as measurement lag and data distortion during purging, a SCR denitration system model of coal-fired units based on feature extraction and particle swarm optimization (PSO) to optimize extreme learning machine (ELM) hyperparameters is proposed in this paper. Mutual information (MI) was used to compensate the time delay, maximum correlation minimum redundancy (mRMR) was used to screen the auxiliary variables, and the optimal ELM hyperparameters were determined by PSO optimization algorithm and the prediction model was established. Finally, the comparison and verification were carried out. The simulation results show that the mean square error and correlation coefficient of the PSO-ELM prediction model established by the method in this paper are 0.931 4 mg/m3 and 0.978 6 respectively, with high prediction accuracy, which can provide technical support for the on-site optimization control of NOx at the exit of the denitrification system.
Key words : mutual information;PSO algorithm;SCR-DeNOx system;extreme learning

0     引言

燃煤機(jī)組產(chǎn)生的氮氧化物(NOx)是大氣污染的首要排放物之一,在空氣質(zhì)量方面影響較為嚴(yán)重[1]。煙氣排放連續(xù)檢測(cè)系統(tǒng)(Continuous Emission Monitoring Systems,CEMS)對(duì)煙氣取樣管路要按時(shí)反向吹掃,以避免積灰堵塞,從而會(huì)導(dǎo)致NOx測(cè)量結(jié)果存在間斷性失真,同時(shí),由于煙氣取樣管路長(zhǎng)度一般為40~60 m,造成測(cè)量結(jié)果出現(xiàn)時(shí)滯現(xiàn)象,控制系統(tǒng)的控制難度也因此得到提升。因此,建立脫硝系統(tǒng)預(yù)測(cè)模型,對(duì)于燃煤機(jī)組的優(yōu)化運(yùn)行,噴氨量的控制以及污染物的監(jiān)測(cè)管理都具有重要意義[2]。

隨著神經(jīng)網(wǎng)絡(luò)的發(fā)展,許多建模方法被應(yīng)用到脫硝系統(tǒng)當(dāng)中。楊文玉等人[3]利用RBF神經(jīng)網(wǎng)絡(luò)建立了脫硝系統(tǒng)出口NOx的預(yù)測(cè)模型,該模型在處理時(shí)序預(yù)測(cè)問(wèn)題時(shí)并沒(méi)有明顯優(yōu)勢(shì)。張淑清等人[4]利用ELM神經(jīng)網(wǎng)絡(luò)建立了電網(wǎng)負(fù)荷的預(yù)測(cè)模型,并利用飛蛾優(yōu)化算法對(duì)模型參數(shù)進(jìn)行優(yōu)化,該文所用訓(xùn)練數(shù)據(jù)過(guò)少,容易導(dǎo)致模型過(guò)擬合。劉延泉等人[5]將互信息與LSSVM方法結(jié)合,對(duì)脫硝系統(tǒng)入口NOx濃度進(jìn)行了預(yù)測(cè),但模型未考慮輸入變量的對(duì)模型的影響。

除了建模方法,特征選擇也會(huì)影響模型的預(yù)測(cè)能力。特征選擇常見(jiàn)的方法有過(guò)濾式(Filter)、封裝式(Wrapper)和嵌入式(Embedded)三種。輸入變量的直接選擇決定了模型的結(jié)構(gòu)與輸出,輸入變量的選擇通常對(duì)工業(yè)機(jī)理進(jìn)行分析,從待選變量進(jìn)行篩選獲取[6-7]。金秀章等人[8]利用mRMR算法篩選出符合模型的輸入變量,建立了出口SO2質(zhì)量濃度預(yù)測(cè)模型,但正則化仍不能計(jì)算出隱層節(jié)點(diǎn)的具體數(shù)量。趙文杰等人[9]利用互信息與優(yōu)化算法結(jié)合確定系統(tǒng)最優(yōu)的輸入變量集合,將互信息特征提取方法應(yīng)用到高維系統(tǒng)中,建立了脫硝系統(tǒng)的預(yù)測(cè)模型,但該方法計(jì)算量大,耗時(shí)較長(zhǎng),實(shí)施起來(lái)較為困難。錢(qián)虹等人[10]采用隨機(jī)森林算法進(jìn)行變量選擇,并對(duì)SCR脫硝系統(tǒng)出口NOx質(zhì)量濃度進(jìn)行了預(yù)測(cè),但模型未解決煙氣采樣管道長(zhǎng)度較長(zhǎng)而導(dǎo)致的時(shí)滯問(wèn)題。


本文詳細(xì)內(nèi)容請(qǐng)下載:http://www.xxav2194.com/resource/share/2000005666




作者信息:

張瑾,姜浩,金秀章

(華北電力大學(xué)控制與計(jì)算機(jī)工程學(xué)院,河北保定071003)

微信圖片_20210517164139.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 久久久亚洲欧洲日产国码农村| 免费一级肉体全黄毛片| 97久久精品人人做人人爽| 日本午夜免费福利视频| 亚洲欧洲精品成人久久曰| 精彩视频一区二区| 国产日韩欧美视频在线| 99在线免费视频| 我要看特级毛片| 亚洲av日韩综合一区二区三区| 男人边吃奶边做弄进去免费视频| 国产伦精品一区二区三区无广告| 2021国产麻豆剧果冻传媒入口 | 91久久大香线蕉| 性护士movievideobest| 久久精品中文无码资源站| 欧美日韩在大午夜爽爽影院| 免费能直接在线观看黄的视频 | 中文字幕不卡一区| 春暖花开亚洲性无区一区二区| 亚洲精品亚洲人成在线观看麻豆| 美女精品永久福利在线| 国产女人91精品嗷嗷嗷嗷| 18禁网站免费无遮挡无码中文| 女人18毛片a级18**多水真多| 中日韩黄色大片| 日韩高清不卡在线| 亚洲日本一区二区三区在线不卡| 福利一区二区三区视频午夜观看 | 金8天国欧美视频hd黑白| 国产精品国产三级在线专区| chinese帅哥18kt| 成人免费在线观看网站| 久久亚洲精品无码| 最近2019中文字幕无吗| 亚洲成a人片在线不卡一二三区| 男人肌肌插女人肌肌| 又粗又黑又大的吊av| 蜜桃视频在线观看官网| 国产成人精品视频一区| 男人天堂资源站|