《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 其他 > 設(shè)計(jì)應(yīng)用 > 基于互信息變量選擇的燃煤機(jī)組SCR脫硝系統(tǒng)PSO-ELM建模
基于互信息變量選擇的燃煤機(jī)組SCR脫硝系統(tǒng)PSO-ELM建模
網(wǎng)絡(luò)安全與數(shù)據(jù)治理 9期
張瑾,姜浩,金秀章
(華北電力大學(xué)控制與計(jì)算機(jī)工程學(xué)院,河北保定071003)
摘要: 針對(duì)燃煤機(jī)組SCR脫硝系統(tǒng)出口NOx濃度存在測(cè)量滯后以及吹掃時(shí)數(shù)據(jù)失真等問(wèn)題,提出了一種基于特征提取和粒子群算法(PSO)優(yōu)化極限學(xué)習(xí)機(jī)(ELM)超參數(shù)的燃煤機(jī)組SCR脫硝系統(tǒng)模型。利用互信息(MI)進(jìn)行時(shí)間遲延補(bǔ)償,采用最大相關(guān)最小冗余(mRMR)方法篩選輔助變量,通過(guò)PSO優(yōu)化算法確定ELM最優(yōu)超參數(shù)并建立預(yù)測(cè)模型,最后進(jìn)行對(duì)比驗(yàn)證。仿真結(jié)果表明:采用本文方法所建立的PSO-ELM預(yù)測(cè)模型的均方誤差和相關(guān)系數(shù)分別為0.931 4 mg/m3和0.978 6,預(yù)測(cè)精度高,能夠?yàn)槊撓跸到y(tǒng)出口NOx的現(xiàn)場(chǎng)優(yōu)化控制提供技術(shù)支持。
中圖分類號(hào):X773
文獻(xiàn)標(biāo)識(shí)碼:A
DOI:10.19358/j.issn.2097-1788.2023.09.013
引用格式:張瑾,姜浩,金秀章.基于互信息變量選擇的燃煤機(jī)組SCR脫硝系統(tǒng)PSO-ELM建模[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2023,42(9):88-95.
PSO-ELM modeling of SCR denitrification system of coal-fired units based on mutual information variable selection
Zhang Jin,Jiang Hao ,Jin Xiuzhang
( School of Control and Computer Engineering,North China Electric Power University,Baoding 071003,China)
Abstract: Aiming at the problems of NOx concentration at the outlet of selective catalytic reduction (SCR) denitration system of coal-fired units, such as measurement lag and data distortion during purging, a SCR denitration system model of coal-fired units based on feature extraction and particle swarm optimization (PSO) to optimize extreme learning machine (ELM) hyperparameters is proposed in this paper. Mutual information (MI) was used to compensate the time delay, maximum correlation minimum redundancy (mRMR) was used to screen the auxiliary variables, and the optimal ELM hyperparameters were determined by PSO optimization algorithm and the prediction model was established. Finally, the comparison and verification were carried out. The simulation results show that the mean square error and correlation coefficient of the PSO-ELM prediction model established by the method in this paper are 0.931 4 mg/m3 and 0.978 6 respectively, with high prediction accuracy, which can provide technical support for the on-site optimization control of NOx at the exit of the denitrification system.
Key words : mutual information;PSO algorithm;SCR-DeNOx system;extreme learning

0     引言

燃煤機(jī)組產(chǎn)生的氮氧化物(NOx)是大氣污染的首要排放物之一,在空氣質(zhì)量方面影響較為嚴(yán)重[1]。煙氣排放連續(xù)檢測(cè)系統(tǒng)(Continuous Emission Monitoring Systems,CEMS)對(duì)煙氣取樣管路要按時(shí)反向吹掃,以避免積灰堵塞,從而會(huì)導(dǎo)致NOx測(cè)量結(jié)果存在間斷性失真,同時(shí),由于煙氣取樣管路長(zhǎng)度一般為40~60 m,造成測(cè)量結(jié)果出現(xiàn)時(shí)滯現(xiàn)象,控制系統(tǒng)的控制難度也因此得到提升。因此,建立脫硝系統(tǒng)預(yù)測(cè)模型,對(duì)于燃煤機(jī)組的優(yōu)化運(yùn)行,噴氨量的控制以及污染物的監(jiān)測(cè)管理都具有重要意義[2]。

隨著神經(jīng)網(wǎng)絡(luò)的發(fā)展,許多建模方法被應(yīng)用到脫硝系統(tǒng)當(dāng)中。楊文玉等人[3]利用RBF神經(jīng)網(wǎng)絡(luò)建立了脫硝系統(tǒng)出口NOx的預(yù)測(cè)模型,該模型在處理時(shí)序預(yù)測(cè)問(wèn)題時(shí)并沒(méi)有明顯優(yōu)勢(shì)。張淑清等人[4]利用ELM神經(jīng)網(wǎng)絡(luò)建立了電網(wǎng)負(fù)荷的預(yù)測(cè)模型,并利用飛蛾優(yōu)化算法對(duì)模型參數(shù)進(jìn)行優(yōu)化,該文所用訓(xùn)練數(shù)據(jù)過(guò)少,容易導(dǎo)致模型過(guò)擬合。劉延泉等人[5]將互信息與LSSVM方法結(jié)合,對(duì)脫硝系統(tǒng)入口NOx濃度進(jìn)行了預(yù)測(cè),但模型未考慮輸入變量的對(duì)模型的影響。

除了建模方法,特征選擇也會(huì)影響模型的預(yù)測(cè)能力。特征選擇常見(jiàn)的方法有過(guò)濾式(Filter)、封裝式(Wrapper)和嵌入式(Embedded)三種。輸入變量的直接選擇決定了模型的結(jié)構(gòu)與輸出,輸入變量的選擇通常對(duì)工業(yè)機(jī)理進(jìn)行分析,從待選變量進(jìn)行篩選獲取[6-7]。金秀章等人[8]利用mRMR算法篩選出符合模型的輸入變量,建立了出口SO2質(zhì)量濃度預(yù)測(cè)模型,但正則化仍不能計(jì)算出隱層節(jié)點(diǎn)的具體數(shù)量。趙文杰等人[9]利用互信息與優(yōu)化算法結(jié)合確定系統(tǒng)最優(yōu)的輸入變量集合,將互信息特征提取方法應(yīng)用到高維系統(tǒng)中,建立了脫硝系統(tǒng)的預(yù)測(cè)模型,但該方法計(jì)算量大,耗時(shí)較長(zhǎng),實(shí)施起來(lái)較為困難。錢虹等人[10]采用隨機(jī)森林算法進(jìn)行變量選擇,并對(duì)SCR脫硝系統(tǒng)出口NOx質(zhì)量濃度進(jìn)行了預(yù)測(cè),但模型未解決煙氣采樣管道長(zhǎng)度較長(zhǎng)而導(dǎo)致的時(shí)滯問(wèn)題。


本文詳細(xì)內(nèi)容請(qǐng)下載:http://www.xxav2194.com/resource/share/2000005666




作者信息:

張瑾,姜浩,金秀章

(華北電力大學(xué)控制與計(jì)算機(jī)工程學(xué)院,河北保定071003)

微信圖片_20210517164139.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 一出一进一爽一粗一大视频免费的| 亚洲日本一区二区三区在线不卡| 成年人在线网站| 好男人官网在线播放| 亚洲AV成人无码天堂| 班主任丝袜脚夹茎故事| 国产交换配乱吟播放免费| 91精品国产三级在线观看| 成人Av无码一区二区三区| 久久精品中文无码资源站| 欧美日韩黄色片| 免费高清电影在线观看| 韩国出轨的女人| 国产精品女在线观看| www.天天射.com| 无码天堂亚洲国产AV| 亚洲av无码乱码国产精品fc2| 滴着奶水做着爱中文字幕| 啊灬老师灬老师灬别停灬用力| 久久国产免费福利永久| 国内精品久久久久影视| 一级做a爰全过程免费视频| 日本最大色倩网站www| 亚洲免费福利视频| 特黄大片aaaaa毛片| 啦啦啦中文在线观看日本| 黄网站色年片在线观看| 国产精品电影一区二区三区 | 老司机亚洲精品影院在线| 国产日产久久高清欧美一区| 97久久精品无码一区二区| 尤物国产在线精品福利一区| 久久久久亚洲AV成人片| 极品丝袜乱系列在线阅读| 亚洲欧美成人一区二区在线电影| 97精品伊人久久大香线蕉| 打麻将脱内衣的小说阿蕊| 久久老色鬼天天综合网观看| 欧美日韩一道本| 人人妻人人做人人爽| 精品女同一区二区三区免费站|