《電子技術應用》
您所在的位置:首頁 > 人工智能 > 設計應用 > 基于拓撲結構的度量學習與拓撲傳播的miRNA-疾病關聯預測算法
基于拓撲結構的度量學習與拓撲傳播的miRNA-疾病關聯預測算法
電子技術應用
趙歡歡1,李顏娥1,武斌1,池方愛2
1.浙江農林大學 數學與計算機科學學院;2.浙江農林大學 風景園林與建筑學院
摘要: miRNA的突變和異常表達可能導致各種疾病,因此預測miRNA與疾病的潛在相關性對于臨床醫學和藥物研究的發展具有重要意義。拓撲結構是miRNA-疾病預測算法的重要組成部分,然而當前算法并未有效利用拓撲結構導致預測結果并不理想。與此同時,如何有效地融合多源數據也是當前的研究趨勢。針對上述問題,提出一種自適應融合異質節點結構信息算法(MMTP),通過利用節點的一階鄰居和元路徑誘導網絡學習結構特征,并利用度量學習和拓撲傳播自適應地融合異質節點結構信息,以提升miRNA-疾病預測精度。5折交叉驗證實驗結果表明,MMTP在HMDD v3.2數據集上的受試者操作曲線下面積(AUC)為94.81,高于其他模型。并且在基于腎癌的案例研究中,該模型所預測的前30個miRNAs全部得到證實。上述研究證明,所提的MMTP模型可有效預測miRNA-疾病相關性。
中圖分類號:TP391 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.244946
中文引用格式: 趙歡歡,李顏娥,武斌,等. 基于拓撲結構的度量學習與拓撲傳播的miRNA-疾病關聯預測算法[J]. 電子技術應用,2024,50(9):67-72.
英文引用格式: Zhao Huanhuan,Li Yan′e,Wu Bin,et al. Topology-based metric learning and topology propagation algorithm for miRNA-disease association prediction[J]. Application of Electronic Technique,2024,50(9):67-72.
Topology-based metric learning and topology propagation algorithm for miRNA-disease association prediction
Zhao Huanhuan1,Li Yan′e1,Wu Bin1,Chi Fang′ai2
1.College of Mathematics and Computer Science, Zhejiang A & F University; 2.School of Landscape Architecture, Zhejiang A & F University
Abstract: Mutations and abnormal expressions of miRNA can potentially lead to various diseases. Hence, predicting the latent correlation between miRNA and diseases holds significant importance for the advancement of clinical medicine and drug research. The topology structure constitutes a crucial component of miRNA-disease prediction algorithms. However, the current algorithms inadequately leverage the topological structure, resulting in suboptimal predictive outcomes. Simultaneously, effectively integrating multi-source data is a current research trend. In response to the aforementioned issues, this paper proposes an adaptive algorithm for fusing heterogeneous node structure information (MMTP). MMTP enhances miRNA-disease prediction accuracy by adaptively integrating heterogeneous node structure information through the utilization of first-order neighbors and metapath-induced network learning of structural features, employing metric learning and topology propagation. Results from a 5-fold cross-validation experiment demonstrate that MMTP achieves Area Under the Curve (AUC) of receiver operating characteristic values of 94.81 on the HMDD v3.2 datasets, surpassing other models. Moreover, in a case study focused on renal cancer, all of the top 30 miRNAs predicted by the model are confirmed. The aforementioned research confirms the efficacy of the proposed MMTP model in predicting miRNA-disease correlations.
Key words : deep learning;miRNA-disease association;metric learning;topology structure

引言

microRNA(miRNA)是一類長度約為22 nt的非編碼單鏈小分子RNA,已被證實同人類復雜疾病的發病機制密切相關[1]。因此,準確識別與特定疾病相關的潛在miRNA對于探索疾病的發病機制與實施相關治療方法至關重要。當前miRNA-疾病關系預測模型主要有3個研究方向:基于相似性、基于機器學習和基于圖神經網絡[2]。

現有方法忽略了異質網絡上節點之間的信息交互,不能完全捕捉到異構網絡中節點之間復雜的結構和豐富的語義。有些模型如NIMGCN[3]、MMGCN[4]只利用miRNAs和疾病的直接鄰域信息而忽略了節點的高階鄰域信息。有些模型如PATMDA[5]、MINIMDA[6]雖然考慮節點的高階鄰近度表示,但是數據的集成卻以一種簡單的方式進行。綜上所述,當前如何充分有效地捕捉異質圖中豐富的結構信息仍亟待探索。與此同時,也需要考慮不同類型數據的自適應融合,以便有效地捕捉數據之間的內在相關性。

基于此,本文提出一種能夠自適應融合異質節點結構信息算法(基于拓撲結構度量學習與拓撲傳播的miRNA-疾病關聯預測算法,MMTP)構建高性能miRNA-疾病關聯預測模型。首先,構建miRNA-疾病異質圖,利用嵌入式方法將高維特征投影到低維空間,通過節點的一階鄰居和元路徑誘導網絡學習結構特征。其次,利用度量學習和拓撲傳播自適應地融合異質節點結構信息,最后通過圖卷積神經網絡得到最終的節點特征,預測潛在的miRNA與疾病的關聯。該算法利用節點的一階鄰居和元路徑誘導網絡學習結構特征,同時考慮節點的局部鄰域和高階拓撲,能夠更全面地捕捉圖的結構特征。另一方面,元路徑誘導網絡使模型能夠靈活地處理異質網絡,從而適應不同類型的節點和邊,以更有效地預測miRNA-疾病關聯。


本文詳細內容請下載:

http://www.xxav2194.com/resource/share/2000006144


作者信息:

趙歡歡1,李顏娥1,武斌1,池方愛2

(1.浙江農林大學 數學與計算機科學學院,浙江 杭州 310000;

2.浙江農林大學 風景園林與建筑學院,浙江 杭州 310000)


Magazine.Subscription.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 激情综合网五月| 一个人看的www在线高清小说| 999在线视频精品免费播放观看| 日韩avwww| 嗯啊h客厅hh青梅h涨奶| 窝窝午夜看片成人精品| 女的被触手到爽羞羞漫画| 久久国产综合精品swag蓝导航| 精品香蕉伊思人在线观看| 天天干天天干天天| 久久久久免费看成人影片| 精品久久人人妻人人做精品| 国产成人精品亚洲精品| 999在线视频精品免费播放观看| 成人午夜又粗又硬有大| 久久精品无码精品免费专区| 精品无码AV一区二区三区不卡| 国産精品久久久久久久| 中文字幕一区二区区免| 最新版天堂资源8网| 亚洲精品白色在线发布| 黑人粗大猛烈进出高潮视频| 在线观看精品国产福利片87| 久久综合久久综合久久| 欧美野性肉体狂欢大派对| 午夜寂寞视频无码专区| 麻豆精品久久久久久久99蜜桃| 国产麻豆剧传媒精品国产AV| 一本久道久久综合| 日本一区二区三区免费观看| 亚洲一区无码中文字幕| 精品水蜜桃久久久久久久| 国产成人免费高清激情明星| 3d动漫精品一区二区三区| 日本在线高清版卡免v| 亚洲宅男天堂a在线| 狠狠躁天天躁中文字幕无码| 国产成人精品免费视频大全| 91极品反差婊在线观看| 奶交性视频欧美| 中文字幕在线播放|