《電子技術應用》
您所在的位置:首頁 > 人工智能 > 設計應用 > 基于改進YOLOv5n的腐敗水果檢測模型
基于改進YOLOv5n的腐敗水果檢測模型
電子技術應用
彭靖翔,張榮芬,劉宇紅
貴州大學 大數據與信息工程學院
摘要: 為了實現多種水果在采摘后自動化篩選和分揀中腐敗水果識別的問題,提出了改進的YOLOv5n模型,命名為mobile-YOLO。首先將YOLOv5n的主干網絡替換為MobileNetV3并引入深度可分離卷積,相較于原模型,這種改進在計算效率和速度上都有所提升,并且準確率也得到了提高。為了進一步提升速度,將C3模塊替換為C2f模塊,實現輕量化的同時獲得了更豐富的梯度流信息。最后將原有的CIoU替換為α-CIoU,以加快收斂速度并保證圖像框位置的準確性。mobile-YOLO相較于原始的YOLOv5n,mAP@.5(mean Average Precision)達到了98.1%,mAP@.5:.95達到了94.2%,同時在P(Precision)值為97.1%和R(Recall)值為96.8%的情況下,參數量幾乎與YOLOv5n保持一致。
中圖分類號:TP391.4 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.245040
中文引用格式: 彭靖翔,張榮芬,劉宇紅. 基于改進YOLOv5n的腐敗水果檢測模型[J]. 電子技術應用,2024,50(12):55-60.
英文引用格式: Peng Jingxiang,Zhang Rongfen,Liu Yuhong. Corrupt fruit detection model based on improved YOLOv5n[J]. Application of Electronic Technique,2024,50(12):55-60.
Corrupt fruit detection model based on improved YOLOv5n
Peng Jingxiang,Zhang Rongfen,Liu Yuhong
School of Big Data and Information Engineering, Guizhou University
Abstract: To address the issues of automated sorting and classification of various fruits post-harvest, particularly in the identification of decayed fruits, this paper introduces an enhanced model derived from YOLOv5n, denominated as mobile-YOLO. The initial modification involves replacing the backbone network of YOLOv5n with MobileNetV3 and incorporating depth-wise separable convolutions. This enhancement results in improved computational efficiency and speed compared to the original model, accompanied by an elevation in accuracy.
Key words : decayed fruits;MobileNetV3;depth-wise separable convolutions;edge devices;YOLOv5n

引言

水果在中國農業中具有重要地位,為農民提供穩定的收入來源。鄧瑞等[1]提出了一種基于輕量版YOLOv5s的水果檢測方法,該方法在TI Sitara平臺上實際測試的檢測速率為23 F/s,平均精度均值為89%,能夠滿足無人水果售貨系統對商品檢測精度和實時性的要求。羅家梅等[2]提出了基于YOLOv5的水果品質檢測與分類方法,可以檢測出蘋果、橘子、香蕉和梨4種水果。容仕軍[3]提出了自然場景下樹上果實檢測小樣本學習方法,可以檢測百香果、蘋果和柑橘3種水果,提高小樣本條件下樹上果實的檢測性能,該方法也具備良好的泛化能力,可以有效提高檢測精確率。葉舒銘等[4]提出了基于機器視覺的橙子缺陷檢測,解決了橙子在生長、采摘、運輸的過程中受到害蟲侵擾、環境影響、碰撞摩擦因素引起的表面損傷及腐爛問題。張杰等[5]提出了基于注意力機制的水果損傷檢測及分類,以ResNet34作為主干網絡,并在此基礎上引入注意力機制SE和CBAM模塊來實現水果損傷的檢測和基本分類,但是模型過于龐大無法在邊緣端實時檢測。徐印赟等[6]為使水果采摘機器人在復雜情況下(如樹葉遮擋、果實目標尺度變化大等)能準確地檢測出水果,改進YOLO及NMS的水果目標檢測。

本文基于改進的YOLOv5n模型實現對腐敗水果的智能化檢測,以便在水果成熟期及時發現并清除腐敗水果,從而減少損失。在工業化采摘的地區,快速檢測腐敗水果以確保及時剔除,也能減輕人力壓力。


本文詳細內容請下載:

http://www.xxav2194.com/resource/share/2000006248


作者信息:

彭靖翔,張榮芬,劉宇紅

(貴州大學 大數據與信息工程學院,貴州 貴陽 550000)


Magazine.Subscription.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 欧美黄色免费在线观看| 久久精品国产亚洲AV麻豆不卡 | 国产精品单位女同事在线| 亚洲AV福利天堂一区二区三| 视频一区二区三区蜜桃麻豆| 成人免费的性色视频| 亚洲中文字幕在线观看| 被男按摩师添的好爽在线直播| 国产调教在线观看| 久久精品国产99久久久| 波多野结衣痴汉| 国产成 人 综合 亚洲专 | 精品国产免费人成网站| 国产高清在线精品一区二区三区| 久久精品国产精品亚洲艾草网| 狠狠色婷婷久久一区二区| 国产极品粉嫩交性大片| 中文免费观看视频网站| 欧美精品寂寞影院请用uc| 国产国产成年年人免费看片| а√天堂中文在线资源bt在线| 欧美大肚乱孕交hd| 免费看大黄高清网站视频在线| 1000部拍拍拍18勿入免费视频软件| 日韩一区二区三区精品| 亚洲最大av网站在线观看| 精品亚洲一区二区三区在线播放| 国产精品国产欧美综合一区 | 狠狠干2019| 国产女人18毛片水真多1| а√最新版地址在线天堂| 日韩免费小视频| 免费看欧美一级特黄a大片一 | 无码办公室丝袜OL中文字幕| 亚洲欧美日韩成人网| 野花社区在线播放| 国产精品久久久久影视不卡| 丝袜高跟美脚国产1区| 欧美成人aa久久狼窝动画| 四虎影视永久免费观看网址| 91精品视频播放|