基于知識圖譜和協同過濾算法的多頭注意力網絡 | |
所屬分類:技術論文 | |
上傳者:wwei | |
文檔大小:1858 K | |
標簽: 推薦系統 知識圖譜 協同過濾 | |
所需積分:0分積分不夠怎么辦? | |
文檔介紹:當前基于知識圖譜的推薦方法大多聚焦于知識關聯的編碼機制,往往忽視了用戶-物品交互中潛在的關鍵協同信號,導致現有模型學習到的嵌入向量無法有效地表達用戶和物品在向量空間中的潛在語義。為解決這一問題,提出一種融合知識圖譜和協同過濾的多頭注意力網絡——協同知識感知多頭注意力網絡(CKAN-MH)。該網絡在傳統的CKAN模型的基礎上引入多頭注意力機制,以自適應地關注不同特征的子集,通過動態調整注意力權重,對尾實體進行差異化加權處理。引入多頭注意力機制后,模型能夠更全面地捕捉數據中隱含的復雜關系與模式,進而顯著提升推薦系統的性能表現。此外,還在三個真實數據集上應用CKAN-MH模型進行實驗評估。實驗結果表明,CKAN-MH模型在性能上優于當前多個主流先進基線模型,驗證了該模型的有效性和優越性。 | |
現在下載 | |
VIP會員,AET專家下載不扣分;重復下載不扣分,本人上傳資源不扣分。 |
Copyright ? 2005-2024 華北計算機系統工程研究所版權所有 京ICP備10017138號-2